Isolation of the epithiospecifier protein from oil-rape (Brassica napus ssp. oleifera) seed and its characterization. (57/2037)

The epithiospecifier protein (ESP) is a myrosinase (MYR) cofactor, which is necessary to drive the MYR-catalyzed hydrolysis of some specific glucosinolates towards the production of cyanoepithioalkanes instead of isothiocyanates and nitriles. ESP was isolated from Brassica napus seeds by anionic exchange and gel filtration chromatography. ESP showed a molecular weight of about 39 kDa and pI 5.3. The amino acid sequence of several tryptic peptides of ESP (accounting for about 50% of the total sequence) made it possible to establish the high similarity (81% identity) with a hypothetical 37 kDa protein (TrEMBL data base accession number Q39104) and several jasmonate-inducible proteins from Arabidopsis thaliana. This observation suggests that ESP is likely to be involved in jasmonate-mediated defence and disease resistance mechanisms.  (+info)

Olive oil phenolics are dose-dependently absorbed in humans. (58/2037)

Olive oil phenolic constituents have been shown, in vitro, to be endowed with potent biological activities including, but not limited to, an antioxidant action. To date, there is no information on the absorption and disposition of such compounds in humans. We report that olive oil phenolics, namely tyrosol and hydroxytyrosol, are dose-dependently absorbed in humans after ingestion and that they are excreted in the urine as glucuronide conjugates. Furthermore, an increase in the dose of phenolics administered increased the proportion of conjugation with glucuronide.  (+info)

Examination of the enantiomeric distribution of certain monoterpene hydrocarbons in selected essential oils by automated solid-phase microextraction-chiral gas chromatography-mass selective detection. (59/2037)

A viable approach for the determination of sources of essential oils based on automatic injection solid-phase microextraction-chiral-gas chromatography-mass selective detection is demonstrated. With no sample preparation, it is shown that the source of essential oils such as peppermint, spearmint, and rosemary can be easily distinguished. Short fiber exposure times of approximately 6 s to the headspace above submicroliter quantities of the selected oils are all that is required to obtain both the required sensitivity and resolution to afford analyses with excellent reproducibilities (relative standard deviation values consistently less than 5.0%).  (+info)

Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. (60/2037)

The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.  (+info)

Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis. (61/2037)

Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.  (+info)

Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. (62/2037)

Measurements of metabolic fluxes in whole embryos and isolated plastids have revealed major changes in the pathways of carbon utilization during cotyledon filling by oilseed rape (Brassica napus L.) embryos. In the early cotyledon stage (stage A), embryos used sucrose (Suc) predominantly for starch synthesis. Plastids isolated from these embryos imported glucose-6-phosphate (Glc-6-P) and partitioned it to starch and fatty acids synthesis and to the oxidative pentose phosphate pathway in the ratio of 2:1:1 on a hexose basis. Of the substrates tested, Glc-6-P gave the highest rates of fatty acid synthesis by the plastids and pyruvate was used weakly. By the mid- to late-cotyledon stage (stage C), oil accumulation by the embryos was rapid, as was their utilization of Suc for oil synthesis in vitro. Plastids from C-stage embryos differed markedly from those of stage-A embryos: (a) pyruvate uptake and utilization for fatty acid synthesis increased by respectively 18- and 25-fold; (b) Glc-6-P partitioning was predominantly to the oxidative pentose phosphate pathway (respective ratios of 1:1:3); and (c) the rate of plastidial fatty acid synthesis more than doubled. This increased rate of fatty synthesis was dependent upon the increase in pyruvate uptake and was mediated through the induction of a saturable transporter activity.  (+info)

Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. (63/2037)

Functional genomics approaches, which use combined computational and expression-based analyses of large amounts of sequence information, are emerging as powerful tools to accelerate the comprehensive understanding of cellular metabolism in specialized tissues and whole organisms. As part of an ongoing effort to identify genes of essential oil (monoterpene) biosynthesis, we have obtained sequence information from 1,316 randomly selected cDNA clones, or expressed sequence tags (ESTs), from a peppermint (Mentha x piperita) oil gland secretory cell cDNA library. After bioinformatic selection, candidate genes putatively involved in essential oil biosynthesis and secretion have been subcloned into suitable expression vectors for functional evaluation in Escherichia coli. On the basis of published and preliminary data on the functional properties of these clones, it is estimated that the ESTs involved in essential oil metabolism represent about 25% of the described sequences. An additional 7% of the recognized genes code for proteins involved in transport processes, and a subset of these is likely involved in the secretion of essential oil terpenes from the site of synthesis to the storage cavity of the oil glands. The integrated approaches reported here represent an essential step toward the development of a metabolic map of oil glands and provide a valuable resource for defining molecular targets for the genetic engineering of essential oil formation.  (+info)

Serum lipid concentrations and mean life span are modulated by dietary polyunsaturated fatty acids in the senescence-accelerated mouse. (64/2037)

The senescence-accelerated mouse (SAMP8) is an animal model used in studies of aging. This study was undertaken to investigate the effects of dietary PUFA on longevity (Experiment 1) and serum lipid concentrations (Experiment 2) in SAMP8 mice. Male mice were fed either an (n-3) PUFA-rich (9 g/100 g perilla oil) or an (n-6) PUFA-rich (9 g/100 g safflower oil) diet beginning at 6 wk of age. Experiment 1: The groups did not differ in body weight gain, but those fed perilla oil had significantly lower scores of senescence relative to those fed safflower oil (P<0.05). The mean life span of mice fed perilla oil was 357+/-21 d and of those fed safflower oil, 426+/-24 d (P<0.05). Pathological studies revealed that the incidence of tumors was significantly lower in the perilla oil group than in the safflower oil group (P<0.05). Approximately half the mice fed perilla oil had died after 10 mo, and the direct causes closely connected with death could not be specified. Experiment 2: The serum total cholesterol, HDL cholesterol, triglyceride and phospholipid concentrations were significantly lower in the perilla oil group than in the safflower oil group (P<0.01). A marked decrease of serum HDL cholesterol and apolipoprotein A-II (ApoA-II)concentrations in advanced age were observed in the mice fed perilla oil (P<0.01). Ten-month-old mice fed perilla oil had a significantly greater ratio of apolipoprotein A-I (ApoA-I) to ApoA-II than those fed safflower oil. Separation of HDL subfractions revealed that the smaller HDL species were much more abundant than the larger HDL species in both dietary oil groups. These findings suggest that dietary (n-3) and (n-6) PUFA differ in their effects on serum lipid metabolism which may modulate the mean life span of SAMP8 mice fed each dietary oil.  (+info)