Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors. (1/145)

Urotensin II (UII) is a cyclic neuropeptide initially isolated from the caudal neurosecretory system of teleost fish. The recent cloning of the UII precursor in frog and human has demonstrated that the peptide is not restricted to the fish urophysis but that it is also expressed in the central nervous system of tetrapods. Here, we describe the characterization of the cDNAs encoding prepro-UII in mouse and rat. A comparison of the primary structures of mouse and rat UII with those of other vertebrate UII reveals that the sequence of the cyclic region of the molecule (CFWKYC) has been fully conserved. In contrast, the N-terminal flanking domain of prepro-UII has markedly diverged with only 48% sequence identity between the mouse or rat and the human precursors. In situ hybridization histochemistry showed that the prepro-UII gene is predominantly expressed in motoneurons of the brainstem and spinal cord, suggesting that UII may play a role in the control of neuromuscular functions.  (+info)

Contractile responses to human urotensin-II in rat and human pulmonary arteries: effect of endothelial factors and chronic hypoxia in the rat. (2/145)

Responses to human urotensin-II (hU-II) were investigated in human and rat pulmonary arteries. Rat pulmonary arteries: hU-II was a potent vasoconstrictor of main pulmonary arteries (2 - 3 mm i.d.) (pEC(50), 8.55+/-0.08, n=21) and was approximately 4 fold more potent than endothelin-1 [ET-1] (P<0.01), although its E(max) was considerably less (approximately 2.5 fold, P<0.001). The potency of hU-II increased 2.5 fold with endothelium removal (P<0.05) and after raising vascular tone with ET-1 (P<0.01). E(max) was enhanced approximately 1.5 fold in the presence of N(omega)-nitro-L-arginine methylester (L-NAME, 100 microM, P<0.01) and approximately 2 fold in vessels from pulmonary hypertensive rats exposed to 2 weeks chronic hypoxia (P<0.05). hU-II did not constrict smaller pulmonary arteries. Human pulmonary arteries ( approximately 250 microm i.d.): in the presence of L-NAME, 3 out of 10 vessels contracted to hU-II and this contraction was highly variable. hU-II is, therefore, a potent vasoconstrictor of rat main pulmonary arteries and this response is increased by endothelial factors, vascular tone and onset of pulmonary hypertension. Inhibition of nitric oxide synthase uncovers contractile responses to hU-II in human pulmonary arteries.  (+info)

Human urotensin-II is an endothelium-dependent vasodilator in rat small arteries. (3/145)

The possible role of the endothelium in modulating responses to human urotensin-II (U-II) was investigated using isolated segments of rat thoracic aorta, small mesenteric artery, left anterior descending coronary artery and basilar artery. Human U-II was a potent vasoconstrictor of endothelium-intact isolated rat thoracic aorta (EC(50)=3.5+/-1.1 nM, R(max)=103+/-10% of control contraction induced by 60 mM KCl and 1 microM noradrenaline). However the contractile response was not significantly altered by removal of the endothelium or inhibition of nitric oxide synthesis with L-NAME (100 microM). Human U-II did not cause relaxation of noradrenaline-precontracted, endothelium-intact rat aortae. Human U-II contracted endothelium-intact rat isolated left anterior descending coronary arteries (EC(50)=1.3+/-0.8 nM, R(max)=20.1+/-4.9% of control contraction induced by 10 microM 5-HT). The contractile response was significantly enhanced by removal of the endothelium (R(max)=55.4+/-16.1%). Moreover, human U-II caused concentration-dependent relaxation of 5-HT-precontracted arteries, which was abolished by L-NAME or removal of the endothelium. No contractile effects of human U-II were found in rat small mesenteric arteries. However the peptide caused potent, concentration- and endothelium-dependent relaxations of methoxamine-precontracted vessels. The relaxant responses were potentiated by L-NAME (300 microM) but abolished in the additional presence of 25 mM KCl (which inhibits the actions of endothelium-derived hyperpolarizing factor). The present study is the first to show that human U-II is a potent endothelium-dependent vasodilator in some rat resistance vessels, and acts through release of EDHF as well as nitric oxide. Our findings have also highlighted clear anatomical differences in the responses of different vascular beds to human U-II which are likely to be important in determining the overall cardiovascular activity of this peptide.  (+info)

Human urotensin-II is a potent spasmogen of primate airway smooth muscle. (4/145)

The contractile profile of human urotensin-II (hU-II) was examined in primate airway and pulmonary vascular tissues. hU-II contracted tissues from different airway regions with similar potencies (pD(2)s from 8.6 to 9.2). However, there were regional differences in the efficacy of hU-II, with a progressive increase in the maximum contraction from trachea to smaller airway regions (from 9 to 41% of the contraction to 10 microM carbachol). hU-II potently contracted pulmonary artery tissues from different regions with similar potencies and efficacies: pD(2)s=8.7 to 9.3 and maximal contractions=79 to 86% of 60 mM KCl. hU-II potently contracted pulmonary vein preparations taken proximal to the atria, but had no effect in tissues from distal to the atria. This is the first report describing the contractile activity of hU-II in airways and suggests that the potential pathophysiological role of this peptide in lung diseases warrants investigation.  (+info)

Orphan-receptor ligand human urotensin II: receptor localization in human tissues and comparison of vasoconstrictor responses with endothelin-1. (5/145)

We have determined the distribution of receptors for human urotensin-II (U-II) in human and rat CNS and peripheral tissues. In rat, [(125)I]-U-II binding density was highest in the abducens nucleus of brainstem (139.6+/-14 amol mm(-2)). Moderate levels were detected in dorsal horn of spinal cord and lower levels in aorta (22. 5+/-6 amol mm(-2)). In human tissues density was highest in skeletal muscle and cerebral cortex ( approximately 30 amol mm(-2)), with lower levels (<15 amol mm(-2)) in kidney cortex and left ventricle. Little binding was identified in atria, conducting system of the heart and lung parenchyma. Receptor density was less in human coronary artery smooth muscle (14.6+/-3 amol mm(-2), n=10) than rat aorta with no significant difference between normal and atherosclerotic vessels. In human skeletal muscle [(125)I]-U-II bound to a single receptor population with K(D)=0.24+/-0.17 nM and B(max)=1.97+/-1.1 fmol mg(-1) protein (n=4). U-II contracted human coronary, mammary and radial arteries, saphenous and umbilical veins with sub-nanomolar EC(50) values. U-II was 50 times more potent in arteries and <10 times more potent in veins than endothelin-1 (ET-1). The maximum response to U-II ( approximately 20% of control KCl) was significantly less than to ET-1 ( approximately 80% KCl). In contrast, in rat aorta, U-II and ET-1 were equipotent with similar maximum responses. This is the first report of high affinity receptors for [(125)I]-U-II in human CNS and peripheral tissues. This peptide produces potent, low efficacy, vasoconstriction in human arteries and veins. These data suggest a potential role for U-II in human physiology.  (+info)

Differential vasoconstrictor activity of human urotensin-II in vascular tissue isolated from the rat, mouse, dog, pig, marmoset and cynomolgus monkey. (6/145)

1. Urotensin-II (U-II) and its G-protein-coupled receptor, GPR14, are expressed within mammalian cardiac and peripheral vascular tissue and, as such, may regulate mammalian cardiovascular function. The present study details the vasoconstrictor profile of this cyclic undecapeptide in different vascular tissues isolated from a diverse range of mammalian species (rats, mice, dogs, pigs, marmosets and cynomolgus monkeys). 2. The vasoconstrictor activity of human U-II was dependent upon the anatomical origin of the vessel studied and the species from which it was isolated. In the rat, constrictor responses were most pronounced in thoracic aortae and carotid arteries: -log[EC(50)]s 9.09+/-0.19 and 8.84+/-0.21, R(max)s 143+/-21 and 67+/-26% 60 mM KCl, respectively (compared, for example, to -log[EC(50)] 7.90+/-0.11 and R(max) 142+/-12% 60 mM KCl for endothelin-1 [ET-1] in thoracic aortae). Responses were, however, absent in mice aortae (-log[EC(50)] <6.50). These findings were further contrasted by the observation that U-II was a 'coronary-selective' spasmogen in the dog (-log[EC(50)] 9.46+/-0.11, R(max) 109+/-23% 60 mM KCl in LCX coronary artery), yet exhibited a broad spectrum of vasoconstrictor activity in arterial tissue from Old World monkeys (-log[EC(50)]s range from 8.96+/-0.15 to 9.92+/-0.13, R(max)s from 43+/-16 to 527+/-135% 60 mM KCl). Interestingly, significant differences in reproducibility and vasoconstrictor efficacy were seen in tissue from pigs and New World primates (vessels which responded to noradrenaline, phenylephrine, KCl or ET-1 consistently). 3. Thus, human U-II is a potent, efficacious vasoconstrictor of a variety of mammalian vascular tissues. Although significant species/anatomical variations exist, the data support the hypothesis that U-II influences the physiological regulation of mammalian cardiovascular function.  (+info)

Cardiostimulant effects of urotensin-II in human heart in vitro. (7/145)

The effects of the recently identified human peptide urotensin-II (hU-II) were investigated on human cardiac muscle contractility and coronary artery tone. In right atrial trabeculae from non-failing hearts, hU-II caused a concentration-dependent increase in contractile force (pEC(50)=9.5+/-0.1; E(max)=31.3+/-4.8% compared to 9.25 mM Ca(2+); n=9) with no change in contraction duration. In right ventricular trabeculae from explanted hearts, 20 nM hU-II caused a small increase in contractile force (7.8+/-1.4% compared to 9.25 mM Ca(2+); n=3/6 tissues from 2 out of 4 patients). The peptide caused arrhythmic contractions in 3/26 right atrial trabeculae from 3/9 patients in an experimental model of arrhythmia and therefore has less potential to cause arrhythmias than ET-1. hU-II (20 nM) increased tone (17.9% of the response to 90 mM KCI) in 7/7 tissues from 1 patient, with no response detected in 8/8 tissues from 2 patients. hU-II is a potent cardiac stimulant with low efficacy.  (+info)

Potent vasodilator responses to human urotensin-II in human pulmonary and abdominal resistance arteries. (8/145)

The peptide human urotensin-II (hUT-II) and its receptor have recently been cloned. The vascular function of this peptide in humans, however, has yet to be determined. Vasoconstrictor and vasodilator responses to hUT-II were investigated in human small muscular pulmonary arteries [approximately 70 microm internal diameter (ID)] and human abdominal resistance arteries (approximately 200 microm ID). Vasodilator responses were investigated in endothelin-1 (3 nM) precontracted vessels and, in the small pulmonary vessels, compared with the known vasodilators adrenomedullin, sodium nitroprusside, and acetylcholine. In human small pulmonary arteries, hUT-II did not induce vasoconstriction but was a potent vasodilator [-log M concentration causing 50% of the maximum vasodilator effect (pIC(50)) 10.4 +/- 0.5; percentage of reduction in tone (E(max)) 81 +/- 8% (vs. 23 +/- 11% in time controls), n = 5]. The order of potency for vasodilation was human urotensin-II = adrenomedullin (pIC(50) 10.1 +/- 0.4, n = 6) > sodium nitroprusside (pIC(50) 7.4 +/- 0.2, n = 6) = acetylcholine (pIC(50) 6.8 +/- 0.3, n = 6). In human abdominal arteries, hUT-II did not induce vasoconstriction but was a potent vasodilator [pIC(50) 10.3 +/- 0.7; E(max) 96 +/- 8% (vs. 43 +/- 16% in time controls), n = 4]. This is the first report that hUT-II is a potent vasodilator but not a vasoconstrictor of human small pulmonary arteries and systemic resistance arteries.  (+info)