Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. (1/879)

Sensitivity to the pungent vanilloid, capsaicin, defines a subpopulation of primary sensory neurons that are mainly polymodal nociceptors. The recently cloned vanilloid receptor subtype 1 (VR1) is activated by capsaicin and noxious heat. Using combined in situ hybridization and histochemical methods, we have characterized in sensory ganglia the expression of VR1 mRNA. We show that this receptor is almost exclusively expressed by neurofilament-negative small- and medium-sized dorsal root ganglion cells. Within this population, VR1 mRNA is detected at widely varying levels in both the NGF receptor (trkA)-positive, peptide-producing cells that elicit neurogenic inflammation and the functionally less characterized glial cell line-derived neurotrophic factor-responsive cells that bind lectin Griffonia simplicifolia isolectin B4 (IB4). Cells without detectable levels of VR1 mRNA are found in both classes. A subpopulation of the IB4-binding cells that produce somatostatin has relatively low levels of VR1 mRNA. A previously uncharacterized population of very small cells that express the receptor tyrosine kinase (RET) and that do not label for trkA or IB4-binding has the highest relative levels of VR1 mRNA. The majority of small visceral sensory neurons of the nodose ganglion also express VR1 mRNA, in conjunction with the BDNF receptor trkB but not trkA. Axotomy results in the downregulation of VR1 mRNA in dorsal root ganglion cells. Our data emphasize the heterogeneity of VR1 mRNA expression by subclasses of small sensory neurons, and this may result in their differential sensitivity to chemical and noxious heat stimuli. Our results also indicate that peripherally derived trophic factors may regulate levels of VR1 mRNA.  (+info)

Pancreatic acinar AR42J cells express functional nerve growth factor receptors. (2/879)

The factors regulating the differentiation of the endocrine cells of the pancreas are still unknown. In previous studies, we have demonstrated that, like neurones, various beta-cell lines express functional neurotrophin receptors. Moreover, Trk-A, the nerve growth factor (NGF) high-affinity receptor, is expressed in vivo in mature rat islets and early during development in the pancreatic ductal network that represents the source of putative stem cells. Rat pancreatic AR42J cells possess both exocrine and neuroendocrine properties. Recent studies have shown that these cells can differentiate either into acinar cells or into insulin-expressing cells. In this study, we demonstrate that AR42J cells, in common with the embryonic ductal cells, do express Trk-A. Moreover, on treatment with NGF, Trk-A is phosphorylated and early responsive genes such as NGFI-A, c-fos and c-jun are induced. These results clearly show that the Trk-A receptor expressed in AR42J is functional. AR42J cells provide a model system with which to study the role of NGF in the development of the pancreatic cells.  (+info)

Decreased CGRP, but preserved Trk A immunoreactivity in nerve fibres in inflamed human superficial temporal arteries. (3/879)

The peptidergic sensory innervation of cranial blood vessels may play an important part in vascular head pain. The neuropeptides calcitonin gene-related peptide (CGRP) and substance P in sensory fibres are dependent on nerve growth factor (NGF) produced by the blood vessels, and when released from nerve terminals mediate neurogenic inflammation. NGF is increased in inflamed tissues, and acts via its high affinity receptor trk A on nociceptor fibres to produce hyperalgesia. CGRP and trk A immunoreactive nerve fibres have therefore been studied, for the first time, in inflamed (n=7) and non-inflamed (n=10) temporal arteries biopsied from patients with headache and suspected giant cell arteritis. CGRP immunoreactivity was markedly decreased to absent in adventitial nerve fibres in inflamed regions of vessels, which may reflect secretion from nerve terminals, as CGRP immunoreactivity could still be seen in nerve trunks in periadventitial tissue. Trk A immunoreactive nerve fibres were found in a similar distribution to CGRP containing nerve fibres in non-inflamed vessels, and the trk A immunoreactivity was virtually unchanged in inflamed vessels. The evidence supports a role for NGF related mechanisms in inflammatory vascular head pain. Anti-NGF or anti-trk A agents may represent novel analgesics in this condition.  (+info)

The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation. (4/879)

We have isolated a human cDNA for the signaling adapter molecule FRS-2/suc1-associated neurotrophic factor target and shown that it is tyrosine-phosphorylated in response to nerve growth factor (NGF) stimulation. Importantly, we demonstrate that the phosphotyrosine binding domain of FRS-2 directly binds the Trk receptors at the same phosphotyrosine residue that binds the signaling adapter Shc, suggesting a model in which competitive binding between FRS-2 and Shc regulates differentiation versus proliferation. Consistent with this model, FRS-2 binds Grb-2, Crk, the SH2 domain containing tyrosine phosphatase SH-PTP-2, the cyclin-dependent kinase substrate p13(suc1), and the Src homology 3 (SH3) domain of Src, providing a functional link between TrkA, cell cycle, and multiple NGF signaling effectors. Importantly, overexpression of FRS-2 in cells expressing an NGF nonresponsive TrkA receptor mutant reconstitutes the ability of NGF to stop cell cycle progression and to stimulate neuronal differentiation.  (+info)

A nerve growth factor mimetic TrkA antagonist causes withdrawal of cortical cholinergic boutons in the adult rat. (5/879)

Cholinergic neurons respond to the administration of nerve growth factor (NGF) in vivo with a prominent and selective increase of choline acetyl transferase activity. This suggests the possible involvement of endogenous NGF, acting through its receptor TrkA, in the maintenance of central nervous system cholinergic synapses in the adult rat brain. To test this hypothesis, a small peptide, C(92-96), that blocks NGF-TrkA interactions was delivered stereotactically into the rat cortex over a 2-week period, and its effect and potency were compared with those of an anti-NGF monoclonal antibody (mAb NGF30). Two presynaptic antigenic sites were studied by immunoreactivity, and the number of presynaptic sites was counted by using an image analysis system. Synaptophysin was used as a marker for overall cortical synapses, and the vesicular acetylcholine transporter was used as a marker for cortical cholinergic presynaptic sites. No significant variations in the number of synaptophysin-immunoreactive sites were observed. However, both mAb NGF30 and the TrkA antagonist C(92-96) provoked a significant decrease in the number and size of vesicular acetylcholine transporter-IR sites, with the losses being more marked in the C(92-96) treated rats. These observations support the notion that endogenously produced NGF acting through TrkA receptors is involved in the maintenance of the cholinergic phenotype in the normal, adult rat brain and supports the idea that NGF normally plays a role in the continual remodeling of neural circuits during adulthood. The development of neurotrophin mimetics with antagonistic and eventually agonist action may contribute to therapeutic strategies for central nervous system degeneration and trauma.  (+info)

SH2-B is required for nerve growth factor-induced neuronal differentiation. (6/879)

Nerve growth factor (NGF) is essential for the development and survival of sympathetic and sensory neurons. NGF binds to TrkA, activates the intrinsic kinase activity of TrkA, and promotes the differentiation of pheochromocytoma (PC12) cells into sympathetic-like neurons. Several signaling molecules and pathways are known to be activated by NGF, including phospholipase Cgamma, phosphatidylinositol-3 kinase, and the mitogen-activated protein kinase cascade. However, the mechanism of NGF-induced neuronal differentiation remains unclear. In this study, we examined whether SH2-Bbeta, a recently identified pleckstrin homology and SH2 domain-containing signaling protein, is a critical signaling protein for NGF. TrkA bound to glutathione S-transferase fusion proteins containing SH2-Bbeta, and NGF stimulation dramatically increased that binding. In contrast, NGF was unable to stimulate the association of TrkA with a glutathione S-transferase fusion protein containing a mutant SH2-Bbeta(R555E) with a defective SH2 domain. When overexpressed in PC12 cells, SH2-Bbeta co-immunoprecipitated with TrkA in response to NGF. NGF stimulated tyrosyl phosphorylation of endogenous SH2-Bbeta as well as exogenously expressed GFP-SH2-Bbeta but not GFP-SH2-Bbeta(R555E). Overexpression of SH2-Bbeta(R555E) blocked NGF-induced neurite outgrowth of PC12 cells, whereas overexpression of wild type SH2-Bbeta enhanced NGF-induced neurite outgrowth. Overexpression of either wild type or mutant SH2-Bbeta(R555E) did not alter tyrosyl phosphorylation of TrkA, Shc, or phospholipase Cgamma in response to NGF or NGF-induced activation of ERK1/2, suggesting that SH2-Bbeta may initiate a previously unknown pathway(s) that is essential for NGF-induced neurite outgrowth. Taken together, these data indicate that SH2-Bbeta is a novel signaling molecule required for NGF-induced neuronal differentiation.  (+info)

Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. (7/879)

Although initiating mutations in the ret protooncogene have been found in familial and sporadic medullary thyroid carcinoma (MTC), the molecular events underlying subsequent tumor progression stages are unknown. We now report that changes in trk family neurotrophin receptor expression appear to be involved in both preneoplastic thyroid C cell hyperplasia and later tumor progression. Only a subset of normal C cells expresses trk family receptors, but, in C cell hyperplasia, the affected cells consistently express trkB, with variable expression of trkA and trkC. In later stages of gross MTC tumors, trkB expression was substantially reduced, while trkC expression was increased and often intense. In a cell culture model of MTC, exogenous trkB expression resulted in severely impaired tumorigenicity and was associated with 11-fold lower levels of the angiogenesis factor vascular endothelial growth factor. These results suggest that trk family receptor genes participate in MTC development and progression, and, in particular, that trkB may limit MTC tumor growth by inhibition of angiogenesis.  (+info)

Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC. (8/879)

Animals lacking neurotrophin-3 (NT-3) are born with deficits in almost all sensory ganglia. Among these, the trigeminal ganglion is missing 70% of the normal number of neurons, a deficit which develops during the major period of neurogenesis between embryonic stages (E) 10.5 and E13.5. In order to identify the mechanisms for this deficit, we used antisera specific for TrkA, TrkB, and TrkC to characterize and compare the expression patterns of each Trk receptor in trigeminal ganglia of wild type and NT-3 mutants between E10.5 and E15.5. Strikingly, TrkA, TrkB, and TrkC proteins appear to be exclusively associated with neurons, not precursors. While some neurons show limited co-expression of Trk receptors at E11.5, by E13. 5 each neuron expresses only one Trk receptor. Neuronal birth dating and cell counts show that in wild-type animals all TrkB- and TrkC-expressing neurons are generated before E11.5, while the majority of TrkA-expressing neurons are generated between E11.5 and E13.5. In mice lacking NT-3, the initial formation of the ganglion, as assessed at E10.5, is similar to that in wild-type animals. At E11.5, however, the number of TrkC-expressing neurons is dramatically reduced and the number of TrkC-immunopositive apoptotic profiles is markedly elevated. By E13.5, TrkC-expressing neurons are virtually eliminated. At E11.5, compared to wild type, the number of TrkB-expressing neurons is also reduced and the number of TrkB immunoreactive apoptotic profiles is increased. TrkA neurons are also reduced in the NT-3 mutants, but the major deficit develops between E12.5 and E13.5 when elevated numbers of TrkA-immunoreactive apoptotic profiles are detected. Normal numbers of TrkA- and TrkB-expressing neurons are seen in a TrkC-deficient mutant. Therefore, our data provide evidence that NT-3 supports the survival of TrkA-, TrkB- and TrkC-expressing neurons in the trigeminal ganglion by activating directly each of these receptors in vivo.  (+info)