Transcription factor AP-2 activity is modulated by protein kinase A-mediated phosphorylation. (1/687)

We recently reported that APOE promoter activity is stimulated by cAMP, this effect being mediated by factor AP-2 [Garcia et al. (1996) J. Neurosci. 16, 7550-7556]. Here, we study whether cAMP-induced phosphorylation modulates the activity of AP-2. Recombinant AP-2 was phosphorylated in vitro by protein kinase A (PKA) at Ser239. Mutation of Ser239 to Ala abolished in vitro phosphorylation of AP-2 by PKA, but not the DNA binding activity of AP-2. Cotransfection studies showed that PKA stimulated the effect of AP-2 on the APOE promoter, but not that of the S239A mutant. Therefore, cAMP may modulate AP-2 activity by PKA-induced phosphorylation of this factor.  (+info)

Dual role for transcription factor AP-2 in the regulation of the major fetal promoter P3 of the gene for human insulin-like growth factor II. (2/687)

The human insulin-like growth factor II (IGF-II) gene contains four promoters that are differentially active during cell growth and development. Promoter 3 (P3) is the most active promoter in fetal and non-hepatic adult tissues. In addition to its expression during development, P3 is also the major promoter in many tumour tissues and IGF-II-expressing cell lines. Here we show that AP-2 has a dual function in P3 regulation in vivo as well as in vitro. In cells expressing low levels of endogenous AP-2, AP-2 overexpression activates P3, whereas P3 promoter activity is inhibited in cells containing abundant AP-2. Four potential AP-2-binding sites were identified in footprinting studies with recombinant AP-2. One of these AP-2-binding sites is located within the previously identified element P3-4 that contains two adjacent binding sites for IGF-II promoter-binding proteins IPBP3 and IPBP4/5. By applying binding competition assays and mutational analysis it is shown that AP-2 interferes with IPBP3 binding and transactivation in vivo as well as in vitro. Furthermore, AP-2 can bind additional elements in the proximal P3 promoter that also contribute to AP-2-mediated transactivation as shown by transient transfection assays. From these results we conclude that AP-2 is an important regulator in vivo and in vitro of IGF-II P3 activity.  (+info)

Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. (3/687)

Hoxa2 is expressed in cranial neural crest cells that migrate into the second branchial arch and is essential for proper patterning of neural-crest-derived structures in this region. We have used transgenic analysis to begin to address the regulatory mechanisms which underlie neural-crest-specific expression of Hoxa2. By performing a deletion analysis on an enhancer from the Hoxa2 gene that is capable of mediating expression in neural crest cells in a manner similar to the endogenous gene, we demonstrated that multiple cis-acting elements are required for neural-crest-specific activity. One of these elements consists of a sequence that binds to the three transcription factor AP-2 family members. Mutation or deletion of this site in the Hoxa2 enhancer abrogates reporter expression in cranial neural crest cells but not in the hindbrain. In both cell culture co-transfection assays and transgenic embryos AP-2 family members are able to trans-activate reporter expression, showing that this enhancer functions as an AP-2-responsive element in vivo. Reporter expression is not abolished in an AP-2(alpha) null mutant embryos, suggesting redundancy with other AP-2 family members for activation of the Hoxa2 enhancer. Other cis-elements identified in this study critical for neural-crest-specific expression include an element that influences levels of expression and a conserved sequence, which when multimerized directs expression in a broad subset of neural crest cells. These elements work together to co-ordinate and restrict neural crest expression to the second branchial arch and more posterior regions. Our findings have identified the cis-components that allow Hoxa2 to be regulated independently in rhombomeres and cranial neural crest cells.  (+info)

Differential expression of AP-2alpha and AP-2beta in the developing chick retina: repression of R-FABP promoter activity by AP-2. (4/687)

Retinal fatty acid binding protein (R-FABP) is the avian counterpart of murine brain FABP implicated in glial cell differentiation and neuronal cell migration. R-FABP is highly expressed in the undifferentiated retina and brain of chick embryos. We have previously shown by in vitro studies that the AP-2 transcription factor binds to a consensus AP-2 binding site in the R-FABP promoter region. Based on the expression pattern of AP-2 in the developing retina and on mutational analysis of the AP-2 binding site in DNA transfection experiments, we proposed that AP-2 could be involved in the down-regulation of R-FABP transcription. Here, we describe the cDNA isolation of two members of the AP-2 family expressed in the chick retina, AP-2alpha and AP-2beta. We show that R-FABP mRNA and the AP-2 factors are expressed in mutually exclusive patterns in the differentiating retina: whereas AP-2alpha and AP-2beta are selectively expressed either in amacrine, or in amacrine and horizontal cells, respectively, R-FABP mRNAis found in Muller glial cells and/or bipolar cells. Furthermore, a decrease in R-FABP-dependent expression is obtained upon cotransfection of primary retinal cultures with AP-2 expression vectors and a CAT reporter construct. The early and cell-specific expression of AP-2alpha and AP-2beta in the developing retina suggest a role for this transcription factor family in the early steps of amacrine and horizontal cell differentiation. Repression of the R-FABP gene in these cells may be an important component of their developmental program.  (+info)

Inhibition of tumor necrosis factor alpha-induced prostaglandin E2 production by the antiinflammatory cytokines interleukin-4, interleukin-10, and interleukin-13 in osteoarthritic synovial fibroblasts: distinct targeting in the signaling pathways. (5/687)

OBJECTIVE: To investigate the effects of the antiinflammatory cytokines interleukin-4 (IL-4), IL-10, and IL-13 on tumor necrosis factor alpha (TNFalpha)-induced prostaglandin E2 (PGE2) release in the cellular signaling cascade on human osteoarthritis (OA) synovial fibroblasts. METHODS: Human OA synovial fibroblasts were cultured to explore the impact of IL-4, IL-10, and IL-13 on TNFalpha binding to TNF receptors (TNFR), soluble TNFR (sTNFR), cytoplasmic phospholipase A2 (cPLA2), and cyclooxygenase-2 (COX-2) production, and on the binding activity of the transcription factors nuclear factor kappaB (NF-kappaB), CCAAT-enhancer binding protein (C/EBP), activator protein 2 (AP-2), and cyclic AMP response element-binding protein (CREB). RESULTS: IL-4, IL-10, and IL-13 at 5 ng/ml dramatically reduced TNFalpha-induced PGE2 release by approximately 90% (P < 0.0001). IL-4 up-regulated the level of TNFalpha-induced TNFR by 47% (P < 0.06), while IL-10 down-regulated it by 71% (P < 0.02); IL-13 had no effect. Although statistical significance was not reached, all 3 cytokines up-regulated the basal level of sTNFR-55. IL-4 and IL-10, while not altering the basal level of sTNFR-75, significantly increased the TNFalpha-stimulated release of sTNFR-75. IL-4, IL-10, and IL-13 reduced the TNFalpha-induced COX-2 level, and IL-4 and IL-10 reduced the cPLA2 level. IL-4 had no effect on TNFalpha up-regulation of NF-kappaB, and a slight decrease was noted with IL-10 and IL-13 at the highest concentration used (5 ng/ml). IL-4 and IL-13 decreased the TNFa-induced C/EBP accumulation in a dose-dependent manner, while IL-10 up-regulated its basal level. AP-2 and CREB were not induced by TNFalpha. CONCLUSION: The results indicate that these antiinflammatory cytokines reversed the TNFalpha-induced release of PGE2 by OA synovial fibroblasts, by acting at various levels of the TNFa-dependent signaling cascade. These data shed new light on the mechanisms by which these cytokines reduce inflammatory processes.  (+info)

Transcription factors Sp1 and AP-2 mediate induction of acid sphingomyelinase during monocytic differentiation. (6/687)

Cells from the human monocytic leukemia cell line THP-1 differentiate towards a macrophage-like phenotype when stimulated with phorbol 12-myristate -13- acetate (PMA), 1,25-dihydroxy-vitamin D3, and various other agents. We demonstrate here that the expression of the lysosomal enzyme acid sphingomyelinase (ASM; E.C. 3.1.4.12) is induced during this process and is strongly elevated in differentiated THP-1 cells, as well as in differentiated human mononuclear phagocytes. Using Northern blotting, RNase protection assay, and nuclear run-on analyses, we show that the up-regulation of ASM expression is regulated mainly at the level of transcription and that new protein synthesis is required for enhanced ASM activity. This cell-type specific induction by PMA treatment was further investigated with respect to transcriptional control. A series of 5' deletion derivatives of the upstream regulatory region were used in transient transfection assays to identify promoter elements required for basal and inducible gene expression. A PMA responsive element was localized to a region between -319 and -219 bp upstream of the initiation codon and co-transfections with transcription factor expression plasmids for AP-2 and Sp1 resulted in augmented ASM promoter activity, which was abolished when the binding sites for these two factors were deleted. Using electrophoretic mobility shift assays and supershift assays we demonstrate that this region is specifically bound by Sp1 and AP-2. These factors are present in nuclear extracts prepared from both induced and uninduced THP-1 cells. However, the intensity of the complex formed appeared to increase when nuclear extracts from PMA-treated cells were used. From these studies, we conclude that a concerted action of the transcription factors AP-2 and Sp1 is essential for the up -regulation of ASM expression during the process of macrophage differentiation.  (+info)

A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. (7/687)

A protein module called the WW domain recognizes and binds to a short oligopeptide called the PY motif, PPxY, to mediate protein-protein interactions. The PY motif is present in the transcription activation domains of a wide range of transcription factors including c-Jun, AP-2, NF-E2, C/EBPalpha and PEBP2/CBF, suggesting that it plays an important role in transcriptional activation. We show here that mutation of the PY motif in the subregion of the activation domain of the DNA-binding subunit of PEBP2, PEBP2alpha, abolishes its transactivation function. Using yeast two-hybrid screening, we demonstrate that Yes-associated protein (YAP) binds to the PY motif of PEBP2alpha through its WW domain. The C-terminal region of YAP fused to the DNA-binding domain of GAL4 showed transactivation as strong as that of GAL4-VP16. Exogenously expressed YAP conferred transcription-stimulating activity on the PY motif fused to the GAL4 DNA-binding domain as well as to native PEBP2alpha. The osteocalcin promoter was stimulated by exogenous PEBP2alphaA and a dominant negative form of YAP strongly inhibited this activity, suggesting YAP involvement in this promoter activity in vivo. These results indicate that the PY motif is a novel transcription activation domain that functions by recruiting YAP as a strong transcription activator to target genes.  (+info)

A new cis element is involved in the HER2 gene overexpression in human breast cancer cells. (8/687)

The HER2 proto-oncogene product is overexpressed in 30% of breast cancers, and this correlates with poor prognosis. Increased levels of HER2 mRNA in breast cancer cell lines result from increased gene transcription. We report the identification of a new 17-bp-long cis sequence located between positions -506 and -489 from the transcription start site. This sequence is recognized by a trans-activating factor that we tentatively named HER2 transcription factor (HTF). This factor, involved in the increased transcription of the HER2 gene in the BT-474 mammary tumor cells, has a molecular weight of about Mr 50,000. HTF can also bind, but with a lower affinity, to a related cis sequence present in the epidermal growth factor receptor promoter. Interestingly, the HTF binding activity is high in nuclear extracts from several mammary tumor cells overexpressing the HER2 gene.  (+info)