The one-kilobase DNA fragment upstream of the ardC actin gene of Physarum polycephalum is both a replicator and a promoter. (41/4900)

The 1-kb DNA fragment upstream of the ardC actin gene of Physarum polycephalum promotes the transcription of a reporter gene either in a transient-plasmid assay or as an integrated copy in an ectopic position, defining this region as the transcriptional promoter of the ardC gene (PardC). Since we mapped an origin of replication activated at the onset of S phase within this same fragment, we examined the pattern of replication of a cassette containing the PardC promoter and the hygromycin phosphotransferase gene, hph, integrated into two different chromosomal sites. In both cases, we show by two-dimensional agarose gel electrophoresis that an efficient, early activated origin coincides with the ectopic PardC fragment. One of the integration sites was a normally late-replicating region. The presence of the ectopic origin converted this late-replicating domain into an early-replicating domain in which replication forks propagate with kinetics indistinguishable from those of the native PardC replicon. This is the first demonstration that initiation sites for DNA replication in Physarum correspond to cis-acting replicator sequences. This work also confirms the close proximity of a replication origin and a promoter, with both functions being located within the 1-kb proximal region of the ardC actin gene. A more precise location of the replication origin with respect to the transcriptional promoter must await the development of a functional autonomously replicating sequence assay in Physarum.  (+info)

A nonessential HP1-like protein affects starvation-induced assembly of condensed chromatin and gene expression in macronuclei of Tetrahymena thermophila. (42/4900)

Heterochromatin represents a specialized chromatin environment vital to both the repression and expression of certain eukaryotic genes. One of the best-studied heterochromatin-associated proteins is Drosophila HP1. In this report, we have disrupted all somatic copies of the Tetrahymena HHP1 gene, which encodes an HP1-like protein, Hhp1p, in macronuclei (H. Huang, E. A. Wiley, R. C. Lending, and C. D. Allis, Proc. Natl. Acad. Sci. USA 95:13624-13629, 1998). Unlike the Drosophila HP1 gene, HHP1 is not essential in Tetrahymena spp., and during vegetative growth no clear phenotype is observed in cells lacking Hhp1p (DeltaHHP1). However, during a shift to nongrowth conditions, the survival rate of DeltaHHP1 cells is reduced compared to that of wild-type cells. Upon starvation, Hhp1p becomes hyperphosphorylated concomitant with a reduction in macronuclear volume and an increase in the size of electron-dense chromatin bodies; neither of these morphological changes occurs in the absence of Hhp1p. Activation of two starvation-induced genes (ngoA and CyP) is significantly reduced in DeltaHHP1 cells while, in contrast, the expression of several growth-related or constitutively expressed genes is comparable to that in wild-type cells. These results suggest that Hhp1p functions in the establishment and/or maintenance of a specialized condensed chromatin environment that facilitates the expression of certain genes linked to a starvation-induced response.  (+info)

Reversible tumorigenesis induced by deficiency of vasodilator-stimulated phosphoprotein. (43/4900)

Random homozygous knockout (RHKO) is an antisense RNA strategy capable of identifying genes whose homozygous functional inactivation yields a selectable phenotype in cells growing in culture. Using this approach, we isolated NIH 3T3 fibroblast clones that showed the ability to form colonies on 0.5% agar and tumors in nude mice. The gene inactivated in one of these clones was found to encode VASP (vasodilator-stimulated phosphoprotein), a previously identified protein that binds to components of the cadherin-catenin junctional complex and has been implicated in cell-cell interactions, the formation of actin filaments, and the transmission of signals at the cytoskeleton-membrane interface. Fibroblasts made deficient in VASP by RHKO showed loss of contact inhibition, and consequently, continued cell division past confluence. Restoration of VASP function by reversal of RHKO yielded cells that had lost the neoplastic capabilities acquired during RHKO. Overproduction of VASP mRNA in the sense or antisense orientation from expression constructs introduced by transfection into naive NIH 3T3 fibroblasts also resulted in neoplastic transformation, implying that normal cell growth may require the maintenance of VASP expression within a narrow range. Our results implicate VASP in tumorigenesis and/or cancer progression.  (+info)

Cell cycle arrest and reversion of Ras-induced transformation by a conditionally activated form of mitogen-activated protein kinase kinase kinase 3. (44/4900)

Signal-induced proliferation, differentiation, or stress responses of cells depend on mitogen-activated protein kinase (MAPK) cascades, the core modules of which consist of members of three successively acting kinase families (MAPK kinase kinase [MAP3K], MAPK kinase, and MAPK). It is demonstrated here that the MEKK3 kinase inhibits cell proliferation, a biologic response not commonly associated with members of the MAP3K family of kinases. A conditionally activated form of MEKK3 stably expressed in fibroblasts arrests these cells in early G1. MEKK3 critically blocks mitogen-driven expression of cyclin D1, a cyclin which is essential for progression of fibroblasts through G1. The MEKK3-induced block of cyclin D1 expression and of cell cycle progression may be mediated via p38 MAPK, a downstream effector of MEKK3. The MEKK3-mediated block of proliferation also reverses Ras-induced cellular transformation, suggesting possible tumor-suppressing functions for this kinase. Together, these results suggest an involvement of the MEKK3 kinase in negative regulation of cell cycle progression, and they provide the first insights into biologic activities of this kinase.  (+info)

Distinct regulation of p53 and p73 activity by adenovirus E1A, E1B, and E4orf6 proteins. (45/4900)

Multiple adenovirus (Ad) early proteins have been shown to inhibit transcription activation by p53 and thereby to alter its normal biological functioning. Since these Ad proteins affect the activity of p53 via different mechanisms, we examined whether this inhibition is target gene specific. In addition, we analyzed whether the same Ad early proteins have a comparable effect on transcription activation by the recently identified p53 homologue p73. Our results show that the large E1B proteins very efficiently inhibited the activity of p53 on the Bax, p21(Waf1), cyclin G, and MDM2 reporter constructs but had no effect on the activation of the same reporter constructs by p73, with the exception of some inhibition of the Bax promoter by Ad12 E1B. The repressive effect of the E1A proteins on p53 activity is less than that seen with the large E1B proteins, but the E1A proteins inhibit the activity of both p53 and p73. We could not detect significant inhibition of p53 functions by E4orf6, but a clear repression of the transcription activation by p73 by this Ad early protein was observed. In addition, we found that stable expression of the Ad5 E1A and that of the E1B protein both caused increased p73 protein expression. The large E1B and the E4orf6 proteins together do not target the p73 protein for rapid degradation after adenoviral infection, as has previously been found for the p53 protein, probably because the large E1B protein does not interact with p73. Our results suggest that the p53 and p73 proteins are both inactivated after Ad infection and transformation but via distinct mechanisms.  (+info)

Isoform-specific insertion near the Grb2-binding domain modulates the intrinsic guanine nucleotide exchange activity of hSos1. (46/4900)

Two human hSos1 isoforms (Isf I and Isf II; Rojas et al., Oncogene 12, 2291-2300, 1996) defined by the presence of a distinct 15 amino acid stretch in one of them, were compared biologically and biochemically using representative NIH3T3 transfectants overexpressing either one. We showed that hSos1-Isf II is significantly more effective than hSos1-Isf I to induce proliferation or malignant transformation of rodent fibroblasts when transfected alone or in conjunction with normal H-Ras (Gly12). The hSos1-Isf II-Ras cotransfectants consistently exhibited higher saturation density, lower cell-doubling times, increased focus-forming activity and higher ability to grow on semisolid medium and at low serum concentration than their hSos1-Isf I-Ras counterparts. Furthermore, the ratio of GTP/GDP bound to cellular p21ras was consistently higher in the hSos1-Isf II-transfected clones, both under basal and stimulated conditions. However, no significant differences were detected in vivo between Isf I- and Isf II-transfected clones regarding the amount, stability and subcellular localization of Sos1-Grb2 complex, or the level of hSos1 phosphorylation upon cellular stimulation. Interestingly, direct Ras guanine nucleotide exchange activity assays in cellular lysates showed that Isf II transfectants consistently exhibited about threefold higher activity than Isf I transfectants under basal, unstimulated conditions. Microinjection into Xenopus oocytes of purified peptides corresponding to the C-terminal region of both isoforms (encompassing the 15 amino acid insertion area and the first Grb2-binding motif) showed that only the Isf II peptide, but not its corresponding Isf I peptide, was able to induce measurable rates of meiotic maturation, and synergyzed with insulin, but not progesterone, in induction of GVBD. Our results suggest that the increased biological potency displayed by hSos1-Isf II is due to higher intrinsic guanine nucleotide exchange activity conferred upon this isoform by the 15 a.a. insertion located in proximity to its Grb2 binding region.  (+info)

Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. (47/4900)

The sorting of the Ash1 protein to the daughter nucleus of Saccharomyces cerevisiae in late anaphase of the budding cycle correlates with the localization of ASH1 mRNA at the bud tip [1] [2]. Although the 3' untranslated region (3' UTR) of ASH1 is sufficient to localize a reporter mRNA, it is not necessary, a result which indicates that other sequences are involved [1]. We report the identification of three additional cis-acting elements in the coding region. Each element alone, when fused to a lacZ reporter gene, was sufficient for the localization of the lacZ mRNA reporter to the bud. A fine-structure analysis of the 3' UTR element showed that its function in mRNA localization did not depend on a specific sequence but on the secondary and tertiary structure of a minimal 118 nucleotide stem-loop. Mutations in the stem-loop that affect the localization of the lacZ mRNA reporter also affected the formation of the localization particles, in living cells, composed of a green fluorescent protein (GFP) complexed with lacZ-ASH1-3' UTR mRNA [3]. A specific stem-loop in the 3' UTR of the ASH1 mRNA is therefore required for both localization and particle formation, suggesting that complex formation is part of the localization mechanism. An analysis on one of the coding-region elements revealed a comparable stem-loop structure with similar functional requirements.  (+info)

Tumorigenic conversion resulting from inhibition of apoptosis in a nontumorigenic HeLa-derived hybrid cell line. (48/4900)

Although tumorigenicity in nude mice is one of the most important transformed phenotypes, its mechanism has been little analyzed. To understand the molecular basis of tumorigenicity, we characterized nontumorigenic CGL1 and tumorigenic CGL4 cell lines, both of which were originated from a common ancestral HeLa-human diploid fibroblast hybrid cell clone and retained a malignant state except tumorigenicity. When injected into nude mice, nontumorigenic CGL1 cells underwent apoptosis, but tumorigenic CGL4 cells did not. In vitro, CGL1 was also less resistant to various apoptotic stimuli than CGL4. These results suggested that inhibition of apoptosis may lead to tumorigenicity. To examine this hypothesis, we introduced antiapoptotic genes into the CGL1 cell line and injected the resulting clones into nude mice. The results showed that the ectopic expression of Bcl-2 or E1B19k, but not of crmA, converted CGL1 cells to tumorigenicity, suggesting strongly that this phenotype may be conferred by evasion of apoptosis.  (+info)