Insulin recruits GLUT4 from specialized VAMP2-carrying vesicles as well as from the dynamic endosomal/trans-Golgi network in rat adipocytes. (9/690)

Insulin treatment of fat cells results in the translocation of the insulin-responsive glucose transporter type 4, GLUT4, from intracellular compartments to the plasma membrane. However, the precise nature of these intracellular GLUT4-carrying compartments is debated. To resolve the nature of these compartments, we have performed an extensive morphological analysis of GLUT4-containing compartments, using a novel immunocytochemical technique enabling high labeling efficiency and 3-D resolution of cytoplasmic rims isolated from rat epididymal adipocytes. In basal cells, GLUT4 was localized to three morphologically distinct intracellular structures: small vesicles, tubules, and vacuoles. In response to insulin the increase of GLUT4 at the cell surface was compensated by a decrease in small vesicles, whereas the amount in tubules and vacuoles was unchanged. Under basal conditions, many small GLUT4 positive vesicles also contained IRAP (88%) and the v-SNARE, VAMP2 (57%) but not markers of sorting endosomes (EEA1), late endosomes, or lysosomes (lgp120). A largely distinct population of GLUT4 vesicles (56%) contained the cation-dependent mannose 6-phosphate receptor (CD-MPR), a marker protein that shuttles between endosomes and the trans-Golgi network (TGN). In response to insulin, GLUT4 was recruited both from VAMP2 and CD-MPR positive vesicles. However, while the concentration of GLUT4 in the remaining VAMP2-positive vesicles was unchanged, the concentration of GLUT4 in CD-MPR-positive vesicles decreased. Taken together, we provide morphological evidence indicating that, in response to insulin, GLUT4 is recruited to the plasma membrane by fusion of preexisting VAMP2-carrying vesicles as well as by sorting from the dynamic endosomal-TGN system.  (+info)

Dynamic palmitoylation of lymphoma proprotein convertase prolongs its half-life, but is not essential for trans-Golgi network localization. (10/690)

Proprotein convertases are responsible for the endoproteolytic activation of proproteins in the secretory pathway. The most recently discovered member of this family, lymphoma proprotein convertase (LPC), is a type-I transmembrane protein. Previously, we have demonstrated that its cytoplasmic tail is palmitoylated. In this study, we have identified the two most proximal cysteine residues in the cytoplasmic tail as palmitoylation sites. Substitution of either cysteine residue by alanine interfered with palmitoylation of the other. Palmitoylation of LPC was found to be sensitive to the protein palmitoyltransferase inhibitor tunicamycin but not cerulenin. It was also insensitive to the drugs brefeldin A, monensin and cycloheximide, indicating that the modification occurs in a late exocytic or endocytic compartment. Turnover of palmitoylated LPC is significantly faster (t(1/2) approximately 50 min) than that of the LPC polypeptide backbone (t(1/2) approximately 3 h), suggesting that palmitoylation is reversible. Abrogation of palmitoylation reduced the half-life of the LPC protein, but did not affect steady-state localization of LPC in the trans-Golgi network. Finally, LPC could not be detected in detergent-resistant membrane rafts. Taken together, these results suggest that dynamic palmitoylation of LPC is important for stability, but does not function as a dominant trafficking signal.  (+info)

Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. (11/690)

A broadly conserved membrane-associated protein required for the functional interaction of kinesin-I with axonal cargo was identified. Mutations in sunday driver (syd) and the axonal transport motor kinesin-I cause similar phenotypes in Drosophila, including aberrant accumulations of axonal cargoes. GFP-tagged mammalian SYD localizes to tubulovesicular structures that costain for kinesin-I and a marker of the secretory pathway. Coimmunoprecipitation analysis indicates that mouse SYD forms a complex with kinesin-I in vivo. Yeast two-hybrid analysis and in vitro interaction studies reveal that SYD directly binds kinesin-I via the tetratricopeptide repeat (TPR) domain of kinesin light chain (KLC) with K(d) congruent with 200 nM. We propose that SYD mediates the axonal transport of at least one class of vesicles by interacting directly with KLC.  (+info)

Protein sorting in the Golgi apparatus: a consequence of maturation and triggered sorting. (12/690)

To explain how resident proteins distribute in peak-like patterns at various positions in the secretory pathway, Glick and co-workers postulated that resident proteins comprise different populations (termed kin populations) and that these compete with each other for entering retrograde transport carriers [Glick et al. (1997) FEBS Lett. 414, 177-181]. Using modelling and computer simulation, they could demonstrate that differences in competitiveness sufficed to generate overlapping but distinct peak-like steady state distributions of the different kin populations across the Golgi stack. In this study, we have tested the robustness of the competition model and find that over-expression or changes in the number of kin populations affect their overall steady state distributions. To increase the robustness of the system, we have introduced a milieu-induced trigger for recycling. This allows for a decrease in the coupling between kin populations permitting both over-expression as well as changes in the number of kin populations. We have also extended the model to include a Golgi to endoplasmic reticulum (ER) recycling pathway and find that only a small amount of resident proteins may recycle at any time without upsetting their observed distributions in the Golgi stack. The biological relevance of a trigger-induced sorting mechanism and ER recycling is discussed.  (+info)

Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. (13/690)

Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20 degrees C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.  (+info)

Protein phosphatase 2A binds to the cytoplasmic tail of carboxypeptidase D and regulates post-trans-Golgi network trafficking. (14/690)

Carboxypeptidase D (CPD) is a transmembrane protein that processes proteins in the trans-Golgi network (TGN). A 20-residue region within the cytoplasmic tail of CPD binds protein phosphatase 2A (PP2A). PP2A also binds to the cytoplasmic tails of other secretory pathway proteins: peptidylglycine-(amino)-amidating mono-oxygenase, the cation-independent mannose-6-phosphate receptor and TGN38. The CPD tail is phosphorylated on Thr residues in the AtT-20 cell line. The CPD tail can also be phosphorylated by purified protein kinase A, protein kinase C and casein kinase II. Both the in vitro and the in vivo phosphorylated CPD tail can be dephosphorylated by purified PP2A. The binding of CPD tail peptide to PP2A does not influence phosphatase activity. The rate of transport of CPD from the TGN to the cell surface of AtT-20 cells is decreased 45% by okadaic acid, a PP2A inhibitor. Microinjection of the CPD tail into AtT-20 cells inhibits the transition of CPD from endosomal compartments to the TGN. However, okadaic acid does not affect the rate of budding of CPD from the TGN into nascent vesicles or the rate of uptake from the cell surface into endosomal compartments. These results are consistent with the model that PP2A is involved in the trafficking of proteins between a TGN recycling loop and a cell-surface recycling loop, but is not involved in the individual recycling loops.  (+info)

Cytoplasmic domain of herpes simplex virus gE causes accumulation in the trans-Golgi network, a site of virus envelopment and sorting of virions to cell junctions. (15/690)

Alphaherpesviruses express a heterodimeric glycoprotein, gE/gI, that facilitates cell-to-cell spread between epithelial cells and neurons. Herpes simplex virus (HSV) gE/gI accumulates at junctions formed between polarized epithelial cells at late times of infection. However, at earlier times after HSV infection, or when gE/gI is expressed using virus vectors, the glycoprotein localizes to the trans-Golgi network (TGN). The cytoplasmic (CT) domains of gE and gI contain numerous TGN and endosomal sorting motifs and are essential for epithelial cell-to-cell spread. Here, we swapped the CT domains of HSV gE and gI onto another HSV glycoprotein, gD. When the gD-gI(CT) chimeric protein was expressed using a replication-defective adenovirus (Ad) vector, the protein was found on both the apical and basolateral surfaces of epithelial cells, as was gD. By contrast, the gD-gE(CT) chimeric protein, gE/gI, and gE, when expressed by using Ad vectors, localized exclusively to the TGN. However, gD-gE(CT), gE/gI, and TGN46, a cellular TGN protein, became redistributed largely to lateral surfaces and cell junctions during intermediate to late stages of HSV infection. Strikingly, gE and TGN46 remained sequestered in the TGN when cells were infected with a gI(-)HSV mutant. The redistribution of gE/gI to lateral cell surfaces did not involve widespread HSV inhibition of endocytosis because the transferrin receptor and gE were both internalized from the cell surface. Thus, gE/gI accumulates in the TGN in early phases of HSV infection then moves to lateral surfaces, to cell junctions, at late stages of infection, coincident with the redistribution of a TGN marker. These results are related to recent observations that gE/gI participates in the envelopment of nucleocapsids into cytoplasmic vesicles (A. R. Brack, B. G. Klupp, H. Granzow, R. Tirabassi, L. W. Enquist, and T. C. Mettenleiter, J. Virol. 74:4004-4016, 2000) and that gE/gI can sort nascent virions from cytoplasmic vesicles specifically to the lateral surfaces of epithelial cells (D. C. Johnson, M. Webb, T. W. Wisner, and C. Brunetti, J. Virol. 75:821-833, 2000). Therefore, gE/gI localizes to the TGN, through interactions between the CT domain of gE and cellular sorting machinery, and then participates in envelopment of cytosolic nucleocapsids there. Nascent virions are then sorted from the TGN to cell junctions.  (+info)

Ric1p and the Ypt6p GTPase function in a common pathway required for localization of trans-Golgi network membrane proteins. (16/690)

In Saccharomyces cerevisiae, clathrin is necessary for localization of trans-Golgi network (TGN) membrane proteins, a process that involves cycling of TGN proteins between the TGN and endosomes. To characterize further TGN protein localization, we applied a screen for mutations that cause severe growth defects in combination with a temperature-sensitive clathrin heavy chain. This screen yielded a mutant allele of RIC1. Cells carrying a deletion of RIC1 (ric1Delta) mislocalize TGN membrane proteins Kex2p and Vps10p to the vacuole. Delivery to the vacuole occurs in ric1Delta cells also harboring end3Delta to block endocytosis, indicative of a defect in retrieval to the TGN rather than sorting to endosomes. SYS1, originally discovered as a multicopy suppressor of defects caused by the absence of the Rab GTPase YPT6, was identified as a multicopy suppressor of ric1Delta. Further comparison of ric1Delta and ypt6Delta cells demonstrated identical phenotypes. Multicopy plasmids expressing v-SNAREs Gos1p or Ykt6p, but not other v- and t-SNAREs, partially suppressed phenotypes of ric1Delta and ypt6Delta cells. SLY1-20, a dominant activator of the cis-Golgi network t-SNARE Sed5p, also functioned as a multicopy suppressor. Because Gos1p and Ykt6p interact with Sed5p, these results raise the possibility that TGN membrane protein localization requires Ric1p- and Ypt6p-dependent retrieval to the cis-Golgi network.  (+info)