The mammalian Tolloid-like 1 gene, Tll1, is necessary for normal septation and positioning of the heart. (1/61)

Mammalian Tolloid-like 1 (mTLL-1) is an astacin-like metalloprotease, highly similar in domain structure to the morphogenetically important proteases bone morphogenetic protein-1 (BMP-1) and Drosophila Tolloid. To investigate possible roles for mTLL-1 in mammalian development, we have used gene targeting in ES cells to produce mice with a disrupted allele for the corresponding gene, Tll1. Homozygous mutants were embryonic lethal, with death at mid-gestation from cardiac failure and a unique constellation of developmental defects that were apparently confined solely to the heart. Constant features were incomplete formation of the muscular interventricular septum and an abnormal and novel positioning of the heart and aorta. Consistent with roles in cardiac development, Tll1 expression was specific to precardiac tissue and endocardium in 7.5 and 8.5 days p.c. embryos, respectively. Tll1 expression was also high in the developing interventricular septum, where expression of the BMP-1 gene, Bmp1, was not observed. Cardiac structures that were not affected in Tll1-/- embryos either showed no Tll1 expression (atrio-ventricular cushions) or showed overlapping expression of Tll1 and Bmp1 (aortico-pulmonary septum), suggesting that products of the Bmp1 gene may be capable of functionally substituting for mTLL-1 at sites in which they are co-expressed. Together, the various data show that mTLL-1 plays multiple roles in formation of the mammalian heart and is essential for formation of the interventricular septum.  (+info)

The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. (2/61)

A highly conserved TGF-&bgr; signaling pathway is involved in the establishment of the dorsoventral axis of the vertebrate embryo. Specifically, Bone Morphogenetic Proteins (Bmps) pattern ventral tissues of the embryo while inhibitors of Bmps, such as Chordin, Noggin and Follistatin, are implicated in dorsal mesodermal and neural development. We investigated the role of Tolloid, a metalloprotease that can cleave Chordin and increase Bmp activity, in patterning the dorsoventral axis of the zebrafish embryo. Injection of tolloid mRNA into six dorsalized mutants rescued only one of these mutants, mini fin. Through chromosomal mapping, linkage and cDNA sequence analysis of several mini fin alleles, we demonstrate that mini fin encodes the tolloid gene. Characterization of the mini fin mutant phenotype reveals that Mini fin/Tolloid activity is required for patterning ventral tissues of the tail: the ventral fin, and the ventroposterior somites and vasculature. Gene expression studies show that mfn mutants exhibit reduced expression of ventrally restricted markers at the end of gastrulation, suggesting that the loss of ventral tail tissues is caused by a dorsalization occurring at the end of gastrulation. Based on the mini fin mutant phenotype and the expression of tolloid, we propose that Mini fin/Tolloid modifes the Bmp activity gradient at the end of gastrulation, when the ventralmost marginal cells of the embryo are in close proximity to the dorsal Chordin-expressing cells. At this time, unimpeded Chordin may diffuse to the most ventral marginal regions and inhibit high Bmp activity levels. In the presence of Mini fin/Tolloid, however, Chordin activity would be negatively modulated through proteolytic cleavage, thereby increasing Bmp signaling activity. This extracellular mechanism is amplified by an autoregulatory loop for bmp gene expression.  (+info)

Mammalian BMP-1/Tolloid-related metalloproteinases, including novel family member mammalian Tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis. (3/61)

Vertebrate bone morphogenetic protein 1 (BMP-1) and Drosophila Tolloid (TLD) are prototypes of a family of metalloproteases with important roles in various developmental events. BMP-1 affects morphogenesis, at least partly, via biosynthetic processing of fibrillar collagens, while TLD affects dorsal-ventral patterning by releasing TGFbeta-like ligands from latent complexes with the secreted protein Short Gastrulation (SOG). Here, in a screen for additional mammalian members of this family of developmental proteases, we identify novel family member mammalian Tolloid-like 2 (mTLL-2) and compare enzymatic activities and expression domains of all four known mammalian BMP-1/TLD-like proteases [BMP-1, mammalian Tolloid (mTLD), mammalian Tolloid-like 1 (mTLL-1), and mTLL-2]. Despite high sequence similarities, distinct differences are shown in ability to process fibrillar collagen precursors and to cleave Chordin, the vertebrate orthologue of SOG. As previously demonstrated for BMP-1 and mTLD, mTLL-1 is shown to specifically process procollagen C-propeptides at the physiologically relevant site, while mTLL-2 is shown to lack this activity. BMP-1 and mTLL-1 are shown to cleave Chordin, at sites similar to procollagen C-propeptide cleavage sites, and to counteract dorsalizing effects of Chordin upon overexpression in Xenopus embryos. Proteases mTLD and mTLL-2 do not cleave Chordin. Differences in enzymatic activities and expression domains of the four proteases suggest BMP-1 as the major Chordin antagonist in early mammalian embryogenesis and in pre- and postnatal skeletogenesis.  (+info)

Expression of chick BMP-1/Tolloid during patterning of the neural tube and somites. (4/61)

The expression pattern described here is that of the chick BMP-1/Tolloid family of secreted metalloproteinases during early stages of development. BMP-1/Tolloid transcripts are expressed in the blastoderm, at gastrulation stages and as the neural plate forms and neural tube folds, BMP-1/Tolloid is found at the neural plate/ectodermal transition. Expression is maintained in the premigratory neural crest, and transiently in the migrating cephalic neural crest cells. BMP-1/Tolloid is also expressed in the caudal, but not in the anterior notochord, and in the ventral neural tube at the time of dorso-ventral patterning. Further sites of BMP-1/Tolloid expression are the lateral plate mesoderm and the dermotome and the myotome of the somites.  (+info)

Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity. (5/61)

Structurally unrelated neural inducers in vertebrate and invertebrate embryos have been proposed to function by binding to BMP4 or Dpp, respectively, and preventing these homologous signals from activating their receptor(s). In this study, we investigate the functions of various forms of the Drosophila Sog protein using the discriminating assay of Drosophila wing development. We find that misexpression of Drosophila Sog, or its vertebrate counterpart Chordin, generates a very limited vein-loss phenotype. This sog misexpression phenotype is very similar to that of viable mutants of glass-bottom boat (gbb), which encodes a BMP family member. Consistent with Sog selectively interfering with Gbb signaling, Sog can block the effect of misexpressing Gbb, but not Dpp in the wing. In contrast to the limited BMP inhibitory activity of Sog, we have identified carboxy-truncated forms of Sog, referred to as Supersog, which when misexpressed cause a broad range of dpp(-) mutant phenotypes. In line with its phenotypic effects, Supersog can block the effects of both misexpressing Dpp and Gbb in the wing. Vertebrate Noggin, on the other hand, acts as a general inhibitor of Dpp signaling, which can interfere with the effect of overexpressing Dpp, but not Gbb. We present evidence that Sog processing occurs in vivo and is biologically relevant. Overexpression of intact Sog in embryos and adult wing primordia leads to the developmentally regulated processing of Sog. This in vivo processing of Sog can be duplicated in vitro by treating Sog with a combination of the metalloprotease Tolloid (Tld) plus Twisted Gastrulation (Tsg), another extracellular factor involved in Dpp signaling. In accord with this result, coexpression of intact Sog and Tsg in developing wings generates a phenotype very similar to that of Supersog. Finally, we provide evidence that tsg functions in the embryo to generate a Supersog-like activity, since Supersog can partially rescue tsg(-) mutants. Consistent with this finding, sog(- )and tsg(-) mutants exhibit similar dorsal patterning defects during early gastrulation. These results indicate that differential processing of Sog generates a novel BMP inhibitory activity during development and, more generally, that BMP antagonists play distinct roles in regulating the quality as well as the magnitude of BMP signaling.  (+info)

Bone morphogenetic protein-1 processes probiglycan. (6/61)

Bone morphogenetic protein-1 (BMP-1) is a metalloprotease that plays important roles in regulating the deposition of fibrous extracellular matrix in vertebrates, including provision of the procollagen C-proteinase activity that processes the major fibrillar collagens I-III. Biglycan, a small leucine-rich proteoglycan, is a nonfibrillar extracellular matrix component with functions that include the positive regulation of bone formation. Biglycan is synthesized as a precursor with an NH(2)-terminal propeptide that is cleaved to yield the mature form found in vertebrate tissues. Here, we show that BMP-1 cleaves probiglycan at a single site, removing the propeptide and producing a biglycan molecule with an NH(2) terminus identical to that of the mature form found in tissues. BMP-1-related proteases mammalian Tolloid and mammalian Tolloid-like 1 (mTLL-1) are shown to have low but detectable levels of probiglycan-cleaving activity. Comparison shows that wild type mouse embryo fibroblasts (MEFs) produce only fully processed biglycan, whereas MEFs derived from embryos homozygous null for the Bmp1 gene, which encodes both BMP-1 and mammalian Tolloid, produce predominantly unprocessed probiglycan, and MEFs homozygous null for both the Bmp1 gene and the mTLL-1 gene Tll1 produce only unprocessed probiglycan. Thus, all detectable probiglycan-processing activity in MEFs is accounted for by the products of these two genes.  (+info)

Identification by differential display of a chicken tolloid-related metalloprotease specifically expressed in the caudal notochord. (7/61)

While the ventralizing factor Sonic hedgehog is expressed in the entire notochord (Development 121 (1995) 2537) the latter displays distinct ventralizing activities along its rostrocaudal axis. Hence, in HH stage-10 chicken embryo, the caudal notochord exhibits floor plate inducing capacities lost by rostral regions (Development 117 (1993) 205). Therefore, we hypothesize that the caudal notochord produces some cofactors which may contribute to its ventralizing properties. In order to identify such molecules we applied the differential display strategy and isolated a secreted Tolloid-related metalloprotease displaying a regionalized expression in the notochord.  (+info)

Pattern formation: a new twist to BMP signalling. (8/61)

Dorsal-ventral patterning in Xenopus and Drosophila embryos involves BMP family signalling molecules. Twisted Gastrulation has now been added to the list of proteins that regulate the activity of these molecules, providing new insights into how BMPs are made available to their signalling receptors.  (+info)