Leukemia inhibitory factor and oncostatin M stimulate collagenase-3 expression in osteoblasts. (1/985)

Leukemia inhibitory factor (LIF) and oncostatin M (OSM) have multiple effects on skeletal remodeling. Although these cytokines modestly regulate collagen synthesis in osteoblasts, their effects on collagenase expression and collagen degradation are not known. We tested whether LIF and OSM regulate the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in osteoblast-enriched cells isolated from fetal rat calvariae. LIF and OSM increased collagenase-3 (MMP-13) mRNA and immunoreactive protein levels in a time- and dose-dependent manner. LIF and OSM enhanced the rate of transcription of the collagenase gene and stabilized collagenase mRNA in transcriptionally arrested cells. LIF and OSM failed to regulate the expression of gelatinase A (MMP-2) and B (MMP-9). LIF and OSM modestly stimulated the expression of TIMP-1 but did not alter the expression of TIMP-2 and -3. In conclusion, LIF and OSM stimulate collagenase-3 and TIMP-1 expression in osteoblasts, and these effects may be involved in mediating the bone remodeling actions of these cytokines.  (+info)

TIMP-4 is regulated by vascular injury in rats. (2/985)

The role of basement membrane-degrading matrix metalloproteinases (MMPs) in enabling vascular smooth muscle cell migration after vascular injury has been established in several animal models. In contrast, the role of their native inhibitors, the tissue inhibitors of matrix metalloproteinases (TIMPs), has remained unproven despite frequent coregulation of MMPs and TIMPs in other disease states. We have investigated the time course of expression and localization of TIMP-4 in rat carotid arteries 6 hours, 24 hours, 3 days, 7 days, and 14 days after balloon injury by in situ hybridization, immunohistochemistry, and Western blot analysis. TIMP-4 protein was present in the adventitia of injured carotid arteries from 24 hours after injury. At 7 and 14 days after injury, widespread immunostaining for TIMP-4 was observed throughout the neointima, media, and adventitia of injured arteries. Western blot analysis confirmed the quantitative increase in TIMP-4 protein at 7 and 14 days. In situ hybridization detected increased expression of TIMP-4 as early as 24 hours after injury and a marked induction in neointimal cells 7 days after injury. We then studied the effect of TIMP-4 protein on the migration of smooth muscle cells through a matrix-coated membrane in vitro and demonstrated a 53% reduction in invasion of rat vascular smooth muscle cells. These data and the temporal relationship between the upregulation of TIMP-4, its accumulation, and the onset of collagen deposition suggest an important role for TIMP-4 in the proteolytic balance of the vasculature controlling both smooth muscle migration and collagen accumulation in the injured arterial wall.  (+info)

Examining the relationship between the gelatinolytic balance and the invasive capacity of endothelial cells. (3/985)

Angiogenesis and the formation of new blood vessels requires coordinated regulation of matrix proteolysis and endothelial cell migration. Cellular proteolytic capacity is the balance between secreted matrix metalloproteinases (MMP) and their inhibitors (TIMPs). We have examined the regulation of the gelatinase/TIMP balance by transforming growth factor-beta1 (TGF-beta1) and phorbol myristate acetate (PMA) in bovine endothelial cells. The low constitutive expression of gelatinase A/MMP-2 was upregulated by TGF-beta1 in a dose-dependent manner. Gelatinase B/MMP-9 was only detected upon treatment with either PMA or TGF-beta1. However, addition of both factors together revealed a striking synergistic effect causing upregulation of MMP-9 and downregulation of TIMPs, thereby increasing the net MMP-9/TIMP balance and the gelatinolytic capacity. These effects were observed at both the protein and mRNA levels. We demonstrate that changes in different members of the Jun oncogene family with distinct transactivation properties may account for this synergistic effect. We investigated the contribution of these changes in gelatinolytic balance to endothelial cell migration and invasion. The endothelial cells showed increased cell motility in response to PMA, but the addition of TGF-beta1 had an inhibitory effect. Hence, regulation of the MMP-9/TIMP balance failed to correlate with the migratory or invasive capacity. These results question a direct role for MMP-9 in endothelial cell motility and suggest that gelatinases may contribute in alternative ways to the angiogenic process.  (+info)

Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice. (4/985)

Renal pathology in mice that are transgenic for the murine albumin enhancer/promoter linked to a full-length porcine transforming growth factor-beta1 (TGF-beta1) gene has been described previously. In these mice, transgene expression is limited to the liver and the plasma level of TGF-beta is increased. The earliest renal pathologic change is glomerulosclerosis, at 3 wk of age, and this is followed by tubulointerstitial fibrosis. In this study, it was hypothesized that circulating TGF-beta1 increases renal extracellular matrix accumulation and activates local TGF-beta gene expression. Immunostaining at 5 wk revealed increased amounts of collagen I and III within the mesangium, glomerular capillary loops, and interstitium, while the amount of collagen IV was normal. Similarly, Northern analysis showed increased expression of mRNA encoding collagen I and III, as well as biglycan and decorin, while the expression of collagen IV was unchanged. These changes began as early as 1 wk of age, a time before the appearance of glomerulosclerosis. To evaluate matrix degradation, collagenase IV activity was evaluated by gelatin zymography and an increase in matrix metalloproteinase-2 was found. Finally, the production of tissue inhibitors of metalloproteinase was evaluated. Tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA was increased 18-fold, while TIMP-2 and TIMP-3 were unchanged. In 2-wk-old transgenic kidney, local expression of TGF-beta1, beta2, and beta3 protein was similar to wild-type mice. In 5-wk-old transgenic mice, TGF-beta1 and beta2 protein was present in increased amounts within glomeruli, and renal TGF-beta1 mRNA was increased threefold. It is concluded that elevated levels of circulating TGF-beta1 may act on the kidney to increase matrix protein production and decrease matrix remodeling. Only after glomerulosclerosis is established does local glomerular overproduction of TGF-beta become manifest.  (+info)

Endometrial breakdown in women using Norplant is associated with migratory cells expressing matrix metalloproteinase-9 (gelatinase B). (5/985)

Norplant, subdermally implanted slow-release levonorgestrel, is an effective and widely used contraceptive agent but has a high rate of discontinuation due to unacceptable abnormal uterine bleeding. Matrix metalloproteinases (MMPs) are expressed in normal cycling endometrium and are postulated to be responsible for the tissue breakdown at menstruation. We have compared the immunolocalization of MMP-9 and migratory cells in endometrium from Indonesian women using Norplant with normal controls. Positive MMP-9 immunostaining was observed intracellularly within stromal and intravascular leukocytes and extracellularly in areas of tissue lysis adjacent to these migratory cells. The MMP-9 positive cells were identified as neutrophils, eosinophils, CD3+ T-cells and macrophages. Quantitative assessment revealed that the number of MMP-9 positive cells, neutrophils and eosinophils were significantly increased in those endometrial biopsies from Norplant users displaying a shedding morphology and in normal controls at menstruation. There was no correlation between the number of MMP-9 positive cells and the number of bleeding days reported. Endometrial immunostaining for tissue inhibitor of metalloproteinases was similar in Norplant users and normal controls. These results suggest that MMP-9, an enzyme capable of degrading basement membrane components, may be involved in endometrial breakdown in women using Norplant.  (+info)

Defining therapeutic targets by using adenovirus: blocking NF-kappaB inhibits both inflammatory and destructive mechanisms in rheumatoid synovium but spares anti-inflammatory mediators. (6/985)

The role of the transcription factor NF-kappaB in the pathogenesis of rheumatoid arthritis has long been a subject of controversy. We used an adenoviral technique of blocking NF-kappaB through overexpression of the inhibitory subunit IkappaBalpha, which has the advantage that it can be used in the diseased tissue itself, with >90% of the synovial macrophages, fibroblasts, and T cells infected. We found that the spontaneous production of tumor necrosis factor alpha and other pro-inflammatory cytokines is NF-kappaB-dependent in rheumatoid synovial tissue, in contrast to the main anti-inflammatory mediators, like IL-10 and -11, and the IL-1 receptor antagonist. Of even more interest, IkappaBalpha overexpression inhibited the production of matrix metalloproteinases 1 and 3 while not affecting their tissue inhibitor. Blocking NF-kappaB in the rheumatoid joint thus has a very beneficial profile, reducing both the inflammatory response and the tissue destruction. The adenoviral technique described here has widespread applicability, allowing rapid testing of the effects of blocking a potential therapeutic target in either cultures of normal cells or in the diseased tissue itself.  (+info)

Secretion of matrix metalloproteinase-2, matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases into the intrauterine compartments during early pregnancy. (7/985)

Matrix metalloproteinases (MMPs) are important enzymes in tissue remodelling, a key event for the development of the fetal membranes and placenta and establishing the feto-maternal interface during early pregnancy. This study has examined the secretion of the gelatinases, MMP-2 (72 kDa) and MMP-9 (92 kDa), and the endogenous tissue inhibitors of metalloproteinases (TIMPs) into extra-embryonic coelomic and amniotic fluids, the two principal intra-uterine compartments of the first trimester, and compared them to amniotic fluid collected later in gestation. In extra-embryonic coelomic fluid, gelatin zymography demonstrated that MMP-2 (72 kDa) was the predominant gelatinase, with some MMP-9 present. A broad range of TIMPs corresponding to TIMP-1 and TIMP-2, glycosylated and unglycosylated TIMP-3 and TIMP-4 was detected in this compartment by reverse zymography and immunoblot analyses. There was little gelatinase or TIMP activity in amniotic fluid in the first trimester. In amniotic fluid from the second trimester after fusion of the membranes obliterating the extra-embryonic coelom, and at term elective caesarean section, MMP-2 is the predominant gelatinase present, with a broad spectrum of TIMPs. These findings demonstrate that predominantly MMP-2 and also MMP-9, regulated by a range of TIMPs, are involved in intra-uterine tissue remodelling during the establishment of pregnancy.  (+info)

Modulation of gelatinase activity correlates with the dedifferentiation profile of regenerating salamander limbs. (8/985)

Remodeling of extracellular matrix (ECM) is one of the key events in many developmental processes. In the present study, a temporal profile of gelatinase activities in regenerating salamander limbs was examined zymographically. In addition, the effect of retinoic acid (RA) on these enzyme activities was examined to relate the pattern-duplicating effect of RA in limb regenerates with gelatinase activities. During regeneration, various types of gelatinase activities were detected, and these activities were at their maximum levels at the dedifferentiation stage. Upon treatment with chelating agents EDTA and 1,10-phenanthroline, the enzyme activities were inhibited indicating that those enzymes are likely matrix metalloproteinases (MMPs). Considering the molecular sizes and the decrease of molecular sizes by treatment with p-aminophenylmercuric acetate, an artificial activator of proMMP, some of the gelatinases expressed during limb regeneration are presumed to be MMP-2 and MMP-9. In RA-treated regenerates, overall gelatinase activities increased, especially the MMP-2-like gelatinase activity which increased markedly. These results suggest that MMP-2-like and MMP-9-like gelatinases play a role in ECM remodeling during regeneration, and that gelatinases are involved in the excessive dedifferentiation after RA treatment.  (+info)