Mutational analysis of the antigenomic trans-acting delta ribozyme: the alterations of the middle nucleotides located on the P1 stem. (9/16154)

Our previous report on delta ribozyme cleavage using a trans -acting antigenomic delta ribozyme and a collection of short substrates showed that the middle nucleotides of the P1 stem, the substrate binding site, are essential for the cleavage activity. Here we have further investigated the effect of alterations in the P1 stem on the kinetic and thermodynamic parameters of delta ribozyme cleavage using various ribozyme variants carrying single base mutations at putative positions reported. The kinetic and thermodynamic values obtained in mutational studies of the two middle nucleotides of the P1 stem suggest that the binding and active sites of the delta ribozyme are uniquely formed. Firstly, the substrate and the ribozyme are engaged in the formation of a helix, known as the P1 stem, which may contain a weak hydrogen bond(s) or a bulge. Secondly, a tertiary interaction involving the base moieties in the middle of the P1 stem likely plays a role in defining the chemical environment. As a con-sequence, the active site might form simultaneously or subsequently to the binding site during later steps of the pathway.  (+info)

Thermodynamic analysis of halide binding to haloalkane dehalogenase suggests the occurrence of large conformational changes. (10/16154)

Haloalkane dehalogenase (DhlA) hydrolyzes short-chain haloalkanes to produce the corresponding alcohols and halide ions. Release of the halide ion from the active-site cavity can proceed via a two-step and a three-step route, which both contain slow enzyme isomerization steps. Thermodynamic analysis of bromide binding and release showed that the slow unimolecular isomerization steps in the three-step bromide export route have considerably larger transition state enthalpies and entropies than those in the other route. This suggests that the three-step route involves different and perhaps larger conformational changes than the two-step export route. We propose that the three-step halide export route starts with conformational changes that result in a more open configuration of the active site from which the halide ion can readily escape. In addition, we suggest that the two-step route for halide release involves the transfer of the halide ion from the halide-binding site in the cavity to a binding site somewhere at the protein surface, where a so-called collision complex is formed in which the halide ion is only weakly bound. No large structural rearrangements are necessary for this latter process.  (+info)

Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. (11/16154)

We examine the similarities and differences between two widely used knowledge-based potentials, which are expressed as contact matrices (consisting of 210 elements) that gives a scale for interaction energies between the naturally occurring amino acid residues. These are the Miyazawa-Jernigan contact interaction matrix M and the potential matrix S derived by Skolnick J et al., 1997, Protein Sci 6:676-688. Although the correlation between the two matrices is good, there is a relatively large dispersion between the elements. We show that when Thr is chosen as a reference solvent within the Miyazawa and Jernigan scheme, the dispersion between the M and S matrices is reduced. The resulting interaction matrix B gives hydrophobicities that are in very good agreement with experiment. The small dispersion between the S and B matrices, which arises due to differing reference states, is shown to have dramatic effect on the predicted native states of lattice models of proteins. These findings and other arguments are used to suggest that for reliable predictions of protein structures, pairwise additive potentials are not sufficient. We also establish that optimized protein sequences can tolerate relatively large random errors in the pair potentials. We conjecture that three body interaction may be needed to predict the folds of proteins in a reliable manner.  (+info)

Breaking the low barrier hydrogen bond in a serine protease. (12/16154)

The serine protease subtilisin BPN' is a useful catalyst for peptide synthesis when dissolved in high concentrations of a water-miscible organic co-solvent such as N,N-dimethylformamide (DMF). However, in 50% DMF, the k(cat) for amide hydrolysis is two orders of magnitude lower than in aqueous solution. Surprisingly, the k(cat) for ester hydrolysis is unchanged in 50% DMF. To explain this alteration in activity, the structure of subtilisin 8397+1 was determined in 20, 35, and 50% (v/v) DMF to 1.8 A resolution. In 50% DMF, the imidazole ring of His64, the central residue of the catalytic triad, has rotated approximately 180 degrees around the Cbeta-Cgamma bond. Two new water molecules in the active site stabilize the rotated conformation. This rotation places His64 in an unfavorable geometry to interact with the other members of the catalytic triad, Ser221 and Asp32. NMR experiments confirm that the characteristic resonance due to the low barrier hydrogen bond between the His64 and Asp32 is absent in 50% DMF. These experiments provide a clear structural basis for the change in activity of serine proteases in organic co-solvents.  (+info)

Free energy landscapes of encounter complexes in protein-protein association. (13/16154)

We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.  (+info)

Molecular dynamics on a model for nascent high-density lipoprotein: role of salt bridges. (14/16154)

The results of an all-atom molecular dynamics simulation on a discoidal complex made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and a synthetic alpha-helical 18-mer peptide with an apolipoprotein-like charge distribution are presented. The system consists of 12 acetyl-18A-amide (Ac-18A-NH2) (. J. Biol. Chem. 260:10248-10255) molecules and 20 molecules of POPC in a bilayer, 10 in each leaflet, solvated in a sphere of water for a total of 28,522 atoms. The peptide molecules are oriented with their long axes normal to the bilayer (the "picket fence" orientation). This system is analogous to complexes formed in nascent high-density lipoprotein and to Ac-18A-NH2/phospholipid complexes observed experimentally. The simulation extended over 700 ps, with the last 493 ps used for analysis. The symmetry of this system allows for averaging over different helices to improve sampling, while maintaining explicit all-atom representation of all peptides. The complex is stable on the simulated time scale. Several possible salt bridges between and within helices were studied. A few salt bridge formations and disruptions were observed. Salt bridges provide specificity in interhelical interactions.  (+info)

Molecular dynamics study of substance P peptides in a biphasic membrane mimic. (15/16154)

Two neuropeptides, substance P (SP) and SP-tyrosine-8 (SP-Y8), have been studied by molecular dynamics (MD) simulation in a TIP3P water/CCl4 biphasic solvent system as a mimic for the water-membrane system. Initially, distance restraints derived from NMR nuclear Overhauser enhancements (NOE) were incorporated in the restrained MD (RMD) in the equilibration stage of the simulation. The starting orientation/position of the peptides for the MD simulation was either parallel to the water/CCl4 interface or in a perpendicular/insertion mode. In both cases the peptides equilibrated and adopted a near-parallel orientation within approximately 250 ps. After equilibration, the conformation and orientation of the peptides, the solvation of both the backbone and the side chain of the residues, hydrogen bonding, and the dynamics of the peptides were analyzed from trajectories obtained in the RMD or the subsequent free MD (where the NOE restraints were removed). These analyses showed that the peptide backbone of nearly all residues are either solvated by water or are hydrogen-bonded. This is seen to be an important factor against the insertion mode of interaction. Most of the interactions with the hydrophobic phase come from the hydrophobic interactions of the side chains of Pro-4, Phe-7, Phe-8, Leu-10, and Met-11 for SP, and Phe-7, Leu-10, Met-11 and, to a lesser extent, Tyr-8 in SP-Y8. Concerted conformational transitions took place in the time frame of hundreds of picoseconds. The concertedness of the transition was due to the tendency of the peptide to maintain the necessary secondary structure to position the peptide properly with respect to the water/CCl4 interface.  (+info)

Molecular dynamics study of substance P peptides partitioned in a sodium dodecylsulfate micelle. (16/16154)

Two neuropeptides, substance P (SP) and SP-tyrosine-8 (SP-Y8), have been studied by molecular dynamics (MD) simulation in an explicit sodium dodecylsulfate (SDS) micelle. Initially, distance restraints derived from NMR nuclear Overhauser enhancements (NOE) were incorporated in the restrained MD (RMD) during the equilibration stage of the simulation. It was shown that when SP-Y8 was initially placed in an insertion (perpendicular) configuration, the peptide equilibrated to a surface-bound (parallel) configuration in approximately 450 ps. After equilibration, the conformation and orientation of the peptides, the solvation of both the backbone and the side chain of the residues, hydrogen bonding, and the dynamics of the peptides were analyzed from trajectories obtained from the RMD or the subsequent free MD (where the NOE restraints were removed). These analyses showed that the peptide backbones of all residues are either solvated by water or are hydrogen-bonded. This is seen to be an important factor against the insertion mode of interaction. Most of the interactions come from the hydrophobic interaction between the side chains of Lys-3, Pro-4, Phe-7, Phe-8, Leu-10, and Met-11 for SP, from Lys-3, Phe-7, Leu-10, and Met-11 in SP-Y8, and the micellar interior. Significant interactions, electrostatic and hydrogen bonding, between the N-terminal residues, Arg-Pro-Lys, and the micellar headgroups were observed. These latter interactions served to affect both the structure and, especially, the flexibility, of the N-terminus. The results from simulation of the same peptides in a water/CCl4 biphasic cell were compared with the results of the present study, and the validity of using the biphasic system as an approximation for peptide-micelle or peptide-bilayer systems is discussed.  (+info)