A comparative genomic analysis of two distant diptera, the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae. (9/1023)

Genome evolution entails changes in the DNA sequence of genes and intergenic regions, changes in gene numbers, and also changes in gene order along the chromosomes. Genes are reshuffled by chromosomal rearrangements such as deletions/insertions, inversions, translocations, and transpositions. Here we report a comparative study of genome organization in the main African malaria vector, Anopheles gambiae, relative to the recently determined sequence of the Drosophila melanogaster genome. The ancestral lines of these two dipteran insects are thought to have separated approximately 250 Myr, a long period that makes this genome comparison especially interesting. Sequence comparisons have identified 113 pairs of putative orthologs of the two species. Chromosomal mapping of orthologous genes reveals that each polytene chromosome arm has a homolog in the other species. Between 41% and 73% of the known orthologous genes remain linked in the respective homologous chromosomal arms, with the remainder translocated to various nonhomologous arms. Within homologous arms, gene order is extensively reshuffled, but a limited degree of conserved local synteny (microsynteny) can be recognized.  (+info)

A necdin/MAGE-like gene in the chromosome 15 autism susceptibility region: expression, imprinting, and mapping of the human and mouse orthologues. (10/1023)

BACKGROUND: Proximal chromosome 15q is implicated in neurodevelopmental disorders including Prader-Willi and Angelman syndromes, autistic disorder and developmental abnormalities resulting from chromosomal deletions or duplications. A subset of genes in this region are subject to genomic imprinting, the expression of the gene from only one parental allele. RESULTS: We have now identified the NDNL2 (also known as MAGE-G) gene within the 15q autistic disorder susceptibility region and have mapped its murine homolog to the region of conserved synteny near necdin (Ndn) on mouse Chr 7. NDNL2/MAGE-G is a member of a large gene family that includes the X-linked MAGE cluster, MAGED1 (NRAGE), MAGEL2 and NDN, where the latter two genes are implicated in Prader-Willi syndrome. We have now determined that NDNL2/Ndnl2 is widely expressed in mouse and human fetal and adult tissues, and that it is apparently not subject to genomic imprinting by the PWS/AS Imprinting Center. CONCLUSION: Although NDNL2/MAGE-G in the broadly defined chromosome 15 autistic disorder susceptibility region, it is not likely to be pathogenic based on its wide expression pattern and lack of imprinted expression.  (+info)

The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. (11/1023)

BACKGROUND: Very small genomes have evolved repeatedly in eubacterial lineages that have adopted obligate associations with eukaryotic hosts. Complete genome sequences have revealed that small genomes retain very different gene sets, raising the question of how final genome content is determined. To examine the process of genome reduction, the tiny genome of the endosymbiont Buchnera aphidicola was compared to the larger ancestral genome, reconstructed on the basis of the phylogenetic distribution of gene orthologs among fully sequenced relatives of Escherichia coli and Buchnera. RESULTS: The reconstructed ancestral genome contained 2,425 open reading frames (ORFs). The Buchnera genome, containing 564 ORFs, consists of 153 fragments of 1-34 genes that are syntenic with reconstructed ancestral regions. On the basis of this reconstruction, 503 genes were eliminated within syntenic fragments, and 1,403 genes were lost from the gaps between syntenic fragments, probably in connection with genome rearrangements. Lost regions are sometimes large, and often span functionally unrelated genes. In addition, individual genes and regulatory regions have been lost or eroded. For the categories of DNA repair genes and rRNA genes, most lost loci fall in regions between syntenic fragments. This history of gene loss is reflected in the sequences of intergenic spacers at positions where genes were once present. CONCLUSIONS: The most plausible interpretation of this reconstruction is that Buchnera lost many genes through the fixation of large deletions soon after the acquisition of an obligate endosymbiotic lifestyle. An implication is that final genome composition may be partly the chance outcome of initial deletions and that neighboring genes influence the likelihood of loss of particular genes and pathways.  (+info)

Different evolutionary processes shaped the mouse and human olfactory receptor gene families. (12/1023)

We report a comprehensive comparative analysis of human and mouse olfactory receptor (OR) genes. The OR family is the largest mammalian gene family known. We identify approximately 93% of an estimated 1500 mouse ORs, exceeding previous estimates and the number of human ORs by 50%. Only 20% are pseudogenes, giving a functional OR repertoire in mice that is three times larger than that of human. The proteins encoded by intact human ORs are less highly conserved than those of mouse, in patterns that suggest that even some apparently intact human OR genes may encode non-functional proteins. Mouse ORs are clustered in 46 genomic locations, compared to a much more dispersed pattern in human. We find orthologous clusters at syntenic human locations for most mouse genes, indicating that most OR gene clusters predate primate-rodent divergence. However, many recent local OR duplications in both genomes obscure one-to-one orthologous relationships, thereby complicating cross-species inferences about OR-ligand interactions. Local duplications are the major force shaping the gene family. Recent interchromosomal duplications of ORs have also occurred, but much more frequently in human than in mouse. In addition to clarifying the evolutionary forces shaping this gene family, our study provides the basis for functional studies of the transcriptional regulation and ligand-binding capabilities of the OR gene family.  (+info)

Molecular characterization and mapping of ATOH7, a human atonal homolog with a predicted role in retinal ganglion cell development. (13/1023)

The human ATOH7 gene encodes a basic helix-loop-helix (bHLH) transcription factor that is highly similar to Drosophila Atonal within the conserved bHLH domain. The ATOH7 coding region is contained within a single exon. We mapped ATOH7 to Chromosome (Chr) 10q21.3-22.1, a region syntenic to the segment of mouse Chr 10 where Atoh7 (formerly Math5) is located. The evolutionary relationship between ATOH7 and other atonal homologs was investigated using parsimony analysis. A direct comparison of ATH5/7 and ATH1 protein subgroups to Atonal also revealed a nonrandom distribution of amino acid changes across the bHLH domain, which may be related to their separate visual and proprioceptive sensory functions. Among bHLH genes, ATOH7 is most closely related to Atoh7. This sequence conservation extends significantly beyond the coding region. We define blocks of strong homology in flanking human and mouse genomic DNA, which are likely to include cis regulatory elements. Because targeted deletion of Atoh7 causes optic nerve agenesis in mice, we propose ATOH7 as a candidate for human optic nerve aplasia and related clinical syndromes.  (+info)

Comparative genomics of Arabidopsis and maize: prospects and limitations. (14/1023)

The completed Arabidopsis genome seems to be of limited value as a model for maize genomics. In addition to the expansion of repetitive sequences in maize and the lack of genomic micro-colinearity, maize-specific or highly-diverged proteins contribute to a predicted maize proteome of about 50,000 proteins, twice the size of that of Arabidopsis.  (+info)

The colinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the triticeae. (15/1023)

The Sh2/A1 orthologous region of maize, rice, and sorghum contains five genes in the order Sh2, X1, X2, and two A1 homologs in tandem duplication. The Sh2 and A1 homologs are separated by approximately 20 kb in rice and sorghum and by approximately 140 kb in maize. We analyzed the fate of the Sh2/A1 region in large-genome species of the Triticeae (wheat, barley, and rye). In the Triticeae, synteny in the Sh2/A1 region was interrupted by a break between the X1 and X2 genes. The A1 and X2 genes remained colinear in homeologous chromosomes as in other grasses. The Sh2 and X1 orthologs also remained colinear but were translocated to a nonhomeologous chromosome. Gene X1 was duplicated on two nonhomeologous chromosomes, and surprisingly, a paralog shared homology much higher than that of the orthologous copy to the X1 gene of other grasses. No tandem duplication of A1 homologs was detected but duplication of A1 on a nonhomeologous barley chromosome 6H was observed. Intergenic distances expanded greatly in wheat compared to rice. Wheat and barley diverged from each other 12 million years ago and both show similar changes in the Sh2/A1 region, suggesting that the break in colinearity as well as X1 duplications and genome expansion occurred in a common ancestor of the Triticeae species.  (+info)

A draft sequence of the rice genome (Oryza sativa L. ssp. indica). (16/1023)

We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.  (+info)