13N-ammonia myocardial blood flow and uptake: relation to functional outcome of asynergic regions after revascularization. (1/294)

OBJECTIVES: In this study we determined whether 13N-ammonia uptake measured late after injection provides additional insight into myocardial viability beyond its value as a myocardial blood flow tracer. BACKGROUND: Myocardial accumulation of 13N-ammonia is dependent on both regional blood flow and metabolic trapping. METHODS: Twenty-six patients with chronic coronary artery disease and left ventricular dysfunction underwent prerevascularization 13N-ammonia and 18F-deoxyglucose (FDG) positron emission tomography, and thallium single-photon emission computed tomography. Pre- and postrevascularization wall-motion abnormalities were assessed using gated cardiac magnetic resonance imaging or gated radionuclide angiography. RESULTS: Wall motion improved in 61 of 107 (57%) initially asynergic regions and remained abnormal in 46 after revascularization. Mean absolute myocardial blood flow was significantly higher in regions that improved compared to regions that did not improve after revascularization (0.63+/-0.27 vs. 0.52+/-0.25 ml/min/g, p < 0.04). Similarly, the magnitude of late 13N-ammonia uptake and FDG uptake was significantly higher in regions that improved (90+/-20% and 94+/-25%, respectively) compared to regions that did not improve after revascularization (67+/-24% and 71+/-25%, p < 0.001 for both, respectively). However, late 13N-ammonia uptake was a significantly better predictor of functional improvement after revascularization (area under the receiver operating characteristic [ROC] curve = 0.79) when compared to absolute blood flow (area under the ROC curve = 0.63, p < 0.05). In addition, there was a linear relationship between late 13N-ammonia uptake and FDG uptake (r = 0.68, p < 0.001) as well as thallium uptake (r = 0.76, p < 0.001) in all asynergic regions. CONCLUSIONS: These data suggest that beyond its value as a perfusion tracer, late 13N-ammonia uptake provides useful information regarding functional recovery after revascularization. The parallel relationship among 13N-ammonia, FDG, and thallium uptake supports the concept that uptake of 13N-ammonia as measured from the late images may provide important insight regarding cell membrane integrity and myocardial viability.  (+info)

Thallium-gated SPECT in patients with major myocardial infarction: effect of filtering and zooming in comparison with equilibrium radionuclide imaging and left ventriculography. (2/294)

The effect of filtering and zooming on 201TI-gated SPECT was evaluated in patients with major myocardial infarction. METHODS: Rest thallium (TI)-gated SPECT was performed with a 90 degrees dual-head camera, 4 h after injection of 185 MBq 201TI in 32 patients (mean age 61 +/- 11 y) with large myocardial infarction (33% +/- 17% defect on bull's eye). End diastolic volume (EDV), end systolic volume (ESV) and left ventricular ejection fraction (LVEF) were calculated using a commercially available semiautomatic validated software. First, images were reconstructed using a 2.5 zoom, a Butterworth filter (order = 5) and six Nyquist cutoff frequencies: 0.13 (B5.13), 0.15 (B5.15), 0.20 (B5.20), 0.25 (B5.25), 0.30 (B5.30) and 0.35 (B5.35). Second, images were reconstructed using a zoom of 1 and a Butterworth filter (order = 5) (cutoff frequency 0.20 [B5.20Z1]) (total = 32 x 7 = 224 reconstructions). LVEF was calculated in all patients using equilibrium radionuclide angiocardiography (ERNA). EDV, ESV and LVEF were measured with contrast left ventriculography (LVG). RESULTS: LVEF was 39% +/- 2% (mean +/- SEM) for ERNA and 40% +/- 13% for LVG (P = 0.51). Gated SPECT with B5.20Z2.5 simultaneously offered a mean LVEF value (39% +/- 2%) similar to ERNA (39% +/- 2%) and LVG (40% +/- 3%), optimal correlations with both ERNA (r = 0.83) and LVG (r = 0.70) and minimal differences with both ERNA (-0.9% +/- 7.5% [mean +/- SD]) and LVG (1.1% +/- 10.5%). As a function of filter and zoom choice, correlation coefficients between ERNA or LVG LVEF, and gated SPECT ranged from 0.26 to 0.88; and correlation coefficients between LVG and gated SPECT volumes ranged from 0.87 to 0.94. There was a significant effect of filtering and zooming on EDV, ESV and LVEF (P < 0.0001). Low cutoff frequency (B5.13) overestimated LVEF (P < 0.0001 versus ERNA and LVG). Gated SPECT with 2.5 zoom and high cutoff frequencies (B5.15, B5.20, B5.25, B5.30 and B5.35) overestimated EDV and ESV (P < 0.04) compared with LVG. This volume overestimation with TI-gated SPECT in patients with large myocardial infarction was correlated to the infarct size. A zoom of 1 underestimated EDV, ESV and LVEF compared with a 2.5 zoom (P < 0.02). CONCLUSION: Accurate LVEF measurement is possible with TI-gated SPECT in patients with major myocardial infarction. However, filtering and zooming greatly influence EDV, ESV and LVEF measurements, and TI-gated SPECT overestimates left ventricular volumes, particularly when the infarct size increases.  (+info)

Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. (3/294)

A new technique for computing left ventricular function, including left ventricular volumes, mass and ejection fraction, has been developed. This method is a logical extension of the results of a standard perfusion quantification technique; thus, it allows integration of perfusion and functional information. METHODS: Anatomically based models of the endocardial and epicardial surfaces are generated using the myocardial samples for which perfusion values are quantified, for all frames in the cardiac cycle. With these surface points, left ventricular chamber volume and myocardial volume can be computed. A computer simulation was used to determine the sensitivity of the approach to the assumptions of the model. Validation of volume, mass and ejection fraction was performed with correlative MR studies, and ejection fraction and left ventricular volumes were further investigated using correlative first-pass studies. RESULTS: Automated processing was successful in 96% of the cases analyzed. End diastolic volume, end systolic volume, left ventricular mass and left ventricular ejection fraction correlated with MRI with r = 0.97, 0.99, 0.87, and 0.85, respectively. Ejection fraction from tomography correlated with first-pass values with r = 0.82, and end diastolic and end systolic volumes from tomography correlated with first-pass values with r = 0.85 and r = 0.91, respectively. CONCLUSION: The new integrated approach is accurate and robust for computing both perfusion and function from perfusion tomograms.  (+info)

201Tl and 99mTc-MIBI gated SPECT in patients with large perfusion defects and left ventricular dysfunction: comparison with equilibrium radionuclide angiography. (4/294)

Left ventricular ejection fraction (LVEF) is a major prognostic factor in coronary artery disease and may be computed by 99mTc-methoxyisobutyl isonitrile (MIBI) gated SPECT. However, 201Tl remains widely used for assessing myocardial perfusion and viability. Therefore, we evaluated the feasibility and accuracy of both 99mTc-MIBI and 201Tl gated SPECT in assessing LVEF in patients with myocardial infarction, large perfusion defects and left ventricular (LV) dysfunction. METHODS: Fifty consecutive patients (43 men, 7 women; mean age 61 +/- 17 y) with a history of myocardial infarction (anterior, 26; inferior, 18; lateral, 6) were studied. All patients underwent equilibnum radionuclide angiography (ERNA) and rest myocardial gated SPECT, either 1 h after the injection of 1110 MBq 99mTc-MIBI (n = 19, group 1) or 4 h after the injection of 185-203 MBq 201Tl (n = 31, group 2) using a 90 degrees dual-head camera. After filtered backprojection (Butterworth filter: order 5, cutoff 0.25 99mTc or 0.20 201Tl), LVEF was calculated from reconstructed gated SPECT with a previously validated semiautomatic commercially available software quantitative gated SPECT (QGS). Perfusion defects were expressed as a percentage of the whole myocardium planimetered by bull's-eye polar map of composite nongated SPECT. RESULTS: Gated SPECT image quality was considered suitable for LVEF measurement in all patients. Mean perfusion defects were 36% +/- 18% (group 1), 33% +/- 17% (group 2), 34% +/- 17% (group 1 + group 2). LVEF was underestimated using gated SPECT compared with ERNA (34% +/- 12% and 39% +/- 12%, respectively; P = 0.0001). Correlations were high (group 1, r= 0.88; group 2, r = 0.76; group 1 + group 2, r = 0.82), and Bland-Altman plots showed a fair agreement between gated SPECT and ERNA. The difference between the two methods did not vary as LVEF, perfusion defect size or seventy increased or when the mitral valve plane was involved in the defect. CONCLUSION: LVEF measurement is feasible using myocardial gated SPECT with the QGS method in patients with large perfusion defects and LV dysfunction. However, both 201Tl and 99mTc-MIBI gated SPECT similarly and significantly underestimated LVEF in patients with LV dysfunction and large perfusion defects.  (+info)

Women's health issues and nuclear medicine, Part I: Women and heart disease. (5/294)

This is the first article of a four-part series on women's health issues and nuclear medicine. This article will review women and heart disease. After reading this article the technologist will be able to: (a) compare and contrast the differences in diagnosing coronary artery disease between men and women; (b) explain the importance of radionuclide myocardial perfusion imaging in diagnosing and stratifying risk of coronary artery disease in women; and (c) list and explain the technical challenges of imaging women's hearts.  (+info)

Capillary density of skeletal muscle: a contributing mechanism for exercise intolerance in class II-III chronic heart failure independent of other peripheral alterations. (6/294)

OBJECTIVES: The study was conducted to determine if the capillary density of skeletal muscle is a potential contributor to exercise intolerance in class II-III chronic heart failure (CHF). BACKGROUND: Previous studies suggest that abnormalities in skeletal muscle histology, contractile protein content and enzymology contribute to exercise intolerance in CHF. METHODS: The present study examined skeletal muscle biopsies from 22 male patients with CHF compared with 10 age-matched normal male control patients. Aerobic capacities, myosin heavy chain (MHC) isoforms, enzymes, and capillary density were measured. RESULTS: The patients with CHF demonstrated a reduced peak oxygen consumption when compared to controls (15.0+/-2.5 vs. 19.8+/-5.0 ml x kg(-1) x min(-1), p <0.05). Using cell-specific antibodies to directly assess vascular density, there was a reduction in capillary density in CHF measured as the number of endothelial cells/fiber (1.42+/-0.28 vs. 1.74+/-0.35, p = 0.02). In CHF, capillary density was inversely related to maximal oxygen consumption (r = 0.479, p = 0.02). The MHC IIx isoform was found to be higher in patients with CHF versus normal subjects (28.5+/-13.6 vs. 19.5+/-9.4, p <0.05). CONCLUSIONS: There was a significant reduction in microvascular density in patients with CHF compared with the control group, without major differences in other usual histologic and biochemical aerobic markers. The inverse relationship with peak oxygen consumption seen in the CHF group suggests that a reduction in microvascular density of skeletal muscle may precede other skeletal muscle alterations and play a critical role in the exercise intolerance characteristic of patients with CHF.  (+info)

Imaging of adenosine bolus transit following intravenous administration: insights into antiarrhythmic efficacy. (7/294)

OBJECTIVE: To study the effects of the site of intravenous injection of adenosine and to assess the site of action of adenosine in the heart by correlating cardiac effects with bolus transit. METHODS: Ten patients undergoing routine technetium (Tc-99m) gated blood pool ventriculography consented to the coadministration of intravenous adenosine. The dose of adenosine required to produce heart block during sinus rhythm was determined following antecubital vein administration. This dose (6-18 mg) was mixed with Tc-99m and given first into the same antecubital vein (proximal injection) and then repeated into a hand vein (distal injection). The ECG was recorded and the transit of the bolus was imaged using a gamma camera. RESULTS: Heart block occurred in all 10 patients (second degree in seven, first degree in three) at (mean (SEM)) 17.5 (1.0) seconds after the proximal injection of adenosine. Distal injection produced heart block in six patients (second degree in two, first degree in four) at 21.9 (4.4) seconds (p < 0.01). In eight of 10 patients the electrophysiological effects were less with distal injection. The onset of heart block was close to the time of peak bolus Tc-99m activity in the left ventricle. Peak bolus activity was delayed (by about three seconds) and the duration of bolus activity in the left ventricle was increased with distal injection compared with proximal injection, at 17.2 (4.2) v 9.2 (3.1) seconds, p < 0.01. CONCLUSIONS: The lesser electrophysiological effects of adenosine following distal intravenous injections were associated with delay in transit time and dispersion of the bolus. The correlation of adenosine induced heart block with bolus activity in the left heart indicated dependence on coronary arterial delivery of adenosine to the atrioventricular node.  (+info)

Influence of arrhythmias on gated SPECT myocardial perfusion and function quantification. (8/294)

Despite the importance of R-wave gating myocardial perfusion tomography for ventricular function assessment, neither prevalence of gating errors nor their influence on quantified cardiac parameters has been studied. METHODS: Arrhythmia-induced anomalies in curves of counts versus projection angle for each R-wave segment were detected visually and algorithmically. Arrhythmia prevalence was tabulated for 379 patients (group 1) with prospective coronary artery disease (mean age 63+/-13 y, 47% male). Myocardial counts were analyzed from all reconstructed cinematic midventricular slices to assess arrhythmia effects on percentage of systolic count increase, generally assumed to equal percentage of wall thickening. In a separate retrospective analysis of 41 patients (group 2), with coronary artery disease (mean age 64+/-12 y, 68% male) having no significant arrhythmias, 36 of whom also underwent equilibrium radionuclide angiography, original projection data were altered to simulate arrhythmia-induced aberrant count patterns to evaluate effects on ventricular function and perfusion measurements. RESULTS: Group 1 patients consisted of 26% without gating errors, 32% with count losses only in the last R-wave interval due to inconsistent transient increase of heart rate, 24% with count decreases in several late intervals due to consistently variable rates, 8% with early interval count increases paired with late interval count decreases due to ectopic beats and 9% with erratic count changes due to atrial fibrillation. Observed count patterns were strongly associated (P < 10(-3)) with arrhythmias detected by electrocardiogram monitoring. In group 2 simulations, ventricular volumes changed by only 2%+/-9% and ejection fraction (EF) by only 1%+/-4% from control values and correlated linearly (r> or = 0.96) with control values for all simulated arrhythmias. SPECT and equilibrium radionuclide angiography EFs correlated similarly (r = 0.85-0.89) for control and all simulations. Percentage changes from control in perfusion defect extent and severity were larger than processing reproducibility limits, the largest change being for atrial fibrillation. Control wall thickening was 38%+/-17%, significantly lower (P < 10(-6)) than for simulated arrhythmias, reflecting similar observations for group 1 patients. CONCLUSION: Even though ventricular volumes and EFs were affected minimally by arrhythmias, both perfusion analysis and wall thickening were compromised. Consequently, quality assurance of gating may be critically important for obtaining accurate quantified parameters.  (+info)