Spatial resolution properties in cone beam CT: a simulation study. (1/6)

This work is intended to investigate the spatial resolution properties in cone beam CT by estimating the point spread functions (PSFs) in the reconstructed 3D images through simulation. The point objects were modeled as 3D delta functions. Their projections onto the detector plane were analytically derived and blurred with 2D PSFs estimated and used to represent the detector and focal spot blurring effects. The 2D PSF for detector blurring was computed from the line spread function measured for a typical a-Si/CsI flat panel detector used for general radiography. The focal spot blurring effect was simulated for an x-ray source with a nominal focal spot size of 0.6 mm and 1.33 x magnification at the rotating center. Projection images were computed and sampled with an interval significantly smaller than the detector pixel size to avoid aliasing. Images were reconstructed using the Feldkamp algorithm with the five different filter functions. Reconstructed PSFs were plotted and analyzed to investigate the effects of detector blurring alone, focal spot blurring alone, or a combination of the two on the PSFs and their variations with the radial distance and z-level. Effects of binning and reconstruction filters were also studied. Our results show that the PSFs due to detector blurring are largely symmetric and vary little with the locations of the point objects. With focal spot blurring only or added to detector blurring, the PSFs along the rotation axis were largely symmetric but became increasingly asymmetric as the point objects were moved away from the rotation axis. The PSFs were found to become wider in the axial (anode to cathode) direction as the objects were moved toward the cathode side. The 3D PSFs may be approximated by an ellipsoid with three different axial lengths. They were found to point upright along the rotating axis but tilt toward the rotating axis as the point object was moved away from the axis.  (+info)

Exact reconstruction of volumetric images in reverse helical cone-beam CT. (2/6)

Helical scanning configuration has been used widely in diagnostic cone-beam computed tomography (CBCT) for acquiring data sufficient for exact image reconstruction over an extended volume. In image-guided radiation therapy (IGRT) and other applications of CBCT, it can be difficult, if not impossible, to implement mechanically a multiple-turn helical trajectory on the imaging systems due to hardware constraints. However, imaging systems in these applications often allow for the implementation of a reverse helical trajectory in which the rotation direction changes between two consecutive turns. Because the reverse helical trajectory satisfies Tuy's condition, when projections of the imaged object are nontruncated, it yields data sufficient for exact image reconstruction within the reverse helix volume. The recently developed chord-based algorithms such as the backprojection filtration (BPF) algorithm can readily be applied to reconstructing images on chords of a reverse helical trajectory, and they can thus reconstruct an image within a volume covered by the chords. Conversely, the chord-based algorithms cannot reconstruct images within regions that are not intersected by chords. In a reverse helix volume, as shown below, chordless regions exist in which no images can thus be reconstructed by use of the chord-based algorithms. In this work, based upon Pack-Noo's formula, a shift-invariant filtered backprojection (FBP) algorithm is derived for exact image reconstruction within the reverse helix volume, including the chordless region. Numerical studies have also been conducted to demonstrate the chordless region in a reverse helix volume and to validate the FBP algorithm for image reconstruction within the chordless region. Results of the numerical studies confirm that the FBP algorithm can exactly reconstruct an image within the entire reverse helix volume, including the chordless region. It is relatively straightforward to extend the FBP algorithm to reconstruct images for general trajectories, including reverse helical trajectories with variable pitch, tilted axis, and/or additional segments between turns.  (+info)

A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT. (3/6)

PURPOSE: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. METHODS: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredback-projection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. RESULTS: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. CONCLUSIONS: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.  (+info)

Influence of rotational setup error on tumor shift in bony anatomy matching measured with pulmonary point registration in stereotactic body radiotherapy for early lung cancer. (4/6)

 (+info)

Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction. (5/6)

 (+info)

Automated segmentation of CBCT image using spiral CT atlases and convex optimization. (6/6)

Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. CBCT scans have relatively low cost and low radiation dose in comparison to conventional spiral CT scans. However, a major limitation of CBCT scans is the widespread image artifacts such as noise, beam hardening and inhomogeneity, causing great difficulties for accurate segmentation of bony structures from soft tissues, as well as separating mandible from maxilla. In this paper, we presented a novel fully automated method for CBCT image segmentation. In this method, we first estimated a patient-specific atlas using a sparse label fusion strategy from predefined spiral CT atlases. This patient-specific atlas was then integrated into a convex segmentation framework based on maximum a posteriori probability for accurate segmentation. Finally, the performance of our method was validated via comparisons with manual ground-truth segmentations.  (+info)