Biochemical characterization of the suberization-associated anionic peroxidase of potato. (25/1525)

The anionic peroxidase associated with the suberization response in potato (Solanum tuberosum L.) tubers during wound healing has been purified and partially characterized at the biochemical level. It is a 45-kD, class III (plant secretory) peroxidase that is localized to suberizing tissues and shows a preference for feruloyl (o-methoxyphenol)-substituted substrates (order of substrate preference: feruloyl > caffeoyl > p-coumaryl approximately syringyl) such as those that accumulate in tubers during wound healing. There was little influence on oxidation by side chain derivatization, although hydroxycinnamates were preferred over the corresponding hydroxycinnamyl alcohols. The substrate specificity pattern is consistent with the natural substrate incorporation into potato wound suberin. In contrast, the cationic peroxidase(s) induced in response to wound healing in potato tubers is present in both suberizing and nonsuberizing tissues and does not discriminate between hydroxycinnamates and hydroxycinnamyl alcohols. A synthetic polymer prepared using E-[8-(13)C]ferulic acid, H(2)O(2), and the purified anionic enzyme contained a significant amount of cross-linking through C-8, albeit with retention of unsaturation.  (+info)

Low temperature and aging-promoted expression of PUMP in potato tuber mitochondria. (26/1525)

In this communication, we show that the plant uncoupling mitochondrial protein (PUMP) present in potato tuber mitochondria is induced by aging at 28 degrees C and that this induction is strongly stimulated when the potato tubers are stored at low temperature (4 degrees C). PUMP activity was detected by the degree of linoleic acid (LA)-induced ATP-sensitive mitochondrial uncoupling measured as a function of the decrease in membrane potential (delta psi). The PUMP content was evaluated by immunoblot analysis using polyclonal antibodies raised against potato PUMP that specifically detected a 32 kDa band. In agreement with the effect of LA on delta psi, the content of the 32 kDa band increased during storage and was stimulated by low temperature. These results support the proposed role of PUMP in plant thermogenesis and possibly in fruit ripening and senescence.  (+info)

Characterization of the dihydrolipoamide acetyltransferase of the mitochondrial pyruvate dehydrogenase complex from potato and comparisons with similar enzymes in diverse plant species. (27/1525)

The pyruvate dehydrogenase complex (mPDC) from potato (Solanum tuberosum cv. Romano) can be disassociated in 1 M NaCl and 0.1 M glycine into a large dihydrolipoamide acetyltransferase (E2) complex and smaller pyruvate dehydrogenase (E1) and dihydrolipoamide dehydrogenase (E3) complexes. The E2 complex consists of 55 and 78-kDa polypeptides which are reversibly radiolabelled to a similar degree in the intact mPDC by [2-14C]pyruvate. Affinity-purified antibodies against the 55-kDa protein do not cross-react with the 78-kDa protein and the two proteins show different peptide patterns following partial proteolysis. The 78 and 55-kDa proteins are present in approximately equal abundance in the E2 complex and incorporate a similar amount of [14C] on incubation with [2-14C]pyruvate. Native mPDC and the E2 complex have sedimentation coefficients of 50S and 30S, respectively. Titration of electro-eluted polypeptides against the intact mPDC and E2 complex revealed that each mg of mPDC contains 0.4 mg of E1, 0.4 mg of E2 and 0.2 mg of E3. Labelling of partially purified mPDC from potato, pea, cauliflower, maize and barley, with [2-14C]pyruvate, suggest that a 78-kDa acetylatable protein is only found in the dicotyledonous species, while all plant species tested contained a smaller 52-60 kDa acetylatable protein.  (+info)

Plant mitochondrial 2-oxoglutarate dehydrogenase complex: purification and characterization in potato. (28/1525)

The 2-oxoglutarate dehydrogenase complex (OGDC) in potato (Solanum tuberosum cv. Romano) tuber mitochondria is largely associated with the membrane fraction of osmotically ruptured organelles, whereas most of the other tricarboxylic acid cycle enzymes are found in the soluble matrix fraction. The purification of OGDC from either membrane or soluble matrix fractions resulted in the increasing dependence of its activity on the addition of dihydrolipoamide dehydrogenase (E3). A 30-fold purification of OGDC to apparent homogeneity and with a specific activity of 4.6 micromol/min per mg of protein in the presence of exogenously added E3 was obtained. SDS/PAGE revealed that the purified complex consisted of three major polypeptides with apparent molecular masses of 48, 50 and 105 kDa. Before the gel-filtration purification step, E3 polypeptides of 57 and 58 kDa were identified by immunoreaction as minor proteins associated with OGDC. The N-terminal sequence of the 57 kDa protein was identical with that previously purified as the E3 component of the pyruvate dehydrogenase complex from potato. The 105 kDa protein was identified as the 2-oxoglutarate dehydrogenase subunit of OGDC by N-terminal sequencing. The N-terminal sequences of the 50 and 48 kDa proteins shared 90-95% identity over 20 residues and were identified by sequence similarity as dihydrolipoamide succinyltransferases (OGDC-E2). The incubation of OGDC with [U-(14)C]2-oxoglutarate resulted in the reversible succinylation of both the 48 and the 50 kDa protein bands. Proteins previously reported as subunits of complex I of the respiratory chain from Vicia faba and Solanum tuberosum are proposed to be OGDC-E2 and the possible basis of this association is discussed.  (+info)

Naturally induced secretions of the potato cyst nematode co-stimulate the proliferation of both tobacco leaf protoplasts and human peripheral blood mononuclear cells. (29/1525)

Naturally induced secretions from infective juveniles of the potato cyst nematode Globodera rostochiensis co-stimulate the proliferation of tobacco leaf protoplasts in the presence of the synthetic phytohormones alpha-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP). With the use of a protoplast-based bioassay, a low-molecular-weight peptide(s) (< 3 kDa) was shown to be responsible for the observed effect. This mitogenic oligopeptide(s) is functionally dissimilar to auxin and cytokinin and, in addition, it does not change the sensitivity of the protoplasts toward these phytohormones. In combination with the mitogen phytohemagglutinin (PHA), cyst nematode secretions also co-stimulated mitogenesis in human peripheral blood mononuclear cells (PBMC). The stimulation of plant cells isolated from nontarget tissue--these nematodes normally invade the roots of potato plants--suggests the activation of a general signal transduction mechanism(s) by an oligopeptide(s) secreted by the nematode. Whether a similar oligopeptide-induced mechanism underlies human PBMC activation remains to be investigated. Reactivation of the cell cycle is a crucial event in feeding cell formation by cyst nematodes. The secretion of a mitogenic low-molecular-weight peptide(s) by infective juveniles of the potato cyst nematode could contribute to the redifferentiation of plant cells into such a feeding cell.  (+info)

Evidence that fructose 1,6-bisphosphate specifically protects the alpha-subunit of pyrophosphate-dependent 6-phosphofructo-1-phosphotransferase against proteolytic degradation. (30/1525)

Pyrophosphate-dependent 6-phosphofructo-1-phosphotransferase (PFP) consists of alpha (regulatory) and beta (catalytic) subunits. The alpha-subunit was previously reported to be much more susceptible to tryptic digestion than the beta-subunit. In this study, ligand-induced protection of PFP subunits against proteolysis by subtilisin was investigated in vitro and the data obtained demonstrated that fructose 1,6-bisphosphate (Fru-1,6-P(2)), while exerting negligible effect on the beta-subunit, remarkably protected the alpha-subunit against proteolytic degradation. Western blot analysis revealed a good correlation between the Fru-1,6-P(2) concentration and the degree of corresponding protection on the alpha-subunit against proteolysis. In contrast, none of other examined ligands including fructose 2,6-bisphosphate, fructose 6-phosphate and pyrophosphate had such protection on the alpha-subunit. This finding (1) indicates that the stability of the alpha-subunit can be selectively increased by Fru-1,6-P(2), and (2) suggests that Fru-1,6-P(2) is likely a special effector of the alpha-subunit.  (+info)

Cloning and comparative protein modeling of two purple acid phosphatase isozymes from sweet potatoes (Ipomoea batatas). (31/1525)

The sequence of cDNA fragments of two isozymes of the purple acid phosphatase from sweet potato (spPAP1 and spPAP2) has been determined by 5' and 3' rapid amplification of cDNA ends protocols using oligonucleotide primers based on amino acid information. The encoded amino acid sequences of these two isozymes show an equidistance of 72-77% not only to each other, but also to the primary structure of the purple acid phosphatase from red kidney bean (kbPAP). A three-dimensional model of the active site has been constructed for spPAP2 on the basis of the kbPAP crystallographic structure that helps to explain the reported differences in the visible and EPR spectra of spPAP2 and kbPAP.  (+info)

Inhibition of soluble and microsomal epoxide hydrolase by zinc and other metals. (32/1525)

Inhibition of xenobiotic-metabolizing enzymes by metals may represent an important mechanism in regulating enzyme activity. Fourteen cations were evaluated for inhibition of microsomal epoxide hydrolase (mEH) (mouse, rat, and human liver), soluble epoxide hydrolase (sEH) (mouse, rat, and human liver), and recombinant potato sEH. Of the metals tested, Hg2+ and Zn2+ were the strongest inhibitors of mEH, while Cd2+ and Cu2+ were also strong inhibitors of sEH (I50 for all approximately 20 microM). Nickel (divalent) and Pb2+ were moderate inhibitors, but Al2+, Ba2+, Ca2+, Co2+, Fe2+, Fe3+, Mg2+, and Mn2+ were weak inhibitors of both mEH and sEH (less than 50% inhibition by 1 mM metal). Six anions (acetate, bromide, chloride, nitrate, perchlorate, and sulfate) were tested and found to have no effect on the inhibition of sEH or mEH by cations. The kinetics and type of inhibition for zinc inhibition of sEH and mEH were examined for mouse, rat, human, and potato. Zinc inhibits mEH in a competitive manner. Inhibition of human and potato sEH was noncompetitive, but interestingly, zinc inhibition of mouse sEH was very strong and uncompetitive. Inhibition by zinc could be reversed by adding EDTA to the incubation buffer. Additionally, mouse liver microsomes and cytosol were incubated with these chelators. Following incubation at 4 degrees C, samples were dialyzed to remove chelator. Both mEH and sEH activity recovered was greater in samples treated with chelator than in control incubations. Similar treatment with the protease inhibitor Nalpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) did not affect enzyme activity recovered. During systemic inflammation, hepatic metallothionien is induced, and liver metal concentrations increase while serum metal concentrations are decreased. The inhibition of microsomal and soluble epoxide hydrolase by metals may represent a mechanism of down-regulation of enzyme activity during inflammation.  (+info)