Effects of 2 low-fat stanol ester-containing margarines on serum cholesterol concentrations as part of a low-fat diet in hypercholesterolemic subjects. (1/310)

BACKGROUND: Full-fat sitostanol ester-containing margarine reduces serum total and LDL cholesterol, but the effect of plant stanol ester-containing margarine as part of a low-fat, low-cholesterol diet has not been studied. OBJECTIVE: We investigated the cholesterol-lowering effects of 2 novel, low-fat stanol ester-containing margarines as part of a low-fat diet recommended for hypercholesterolemic subjects. DESIGN: In a parallel, double-blind study, 55 hypercholesterolemic subjects were randomly assigned after a 4-wk high-fat diet (baseline) to 3 low-fat margarine groups: wood stanol ester-containing margarine (WSEM), vegetable oil stanol ester-containing margarine (VOSEM), and control margarine (no stanol esters). The groups consumed the margarines for 8 wk as part of a diet resembling that of the National Cholesterol Education Program's Step II diet. The daily mean total stanol intake was 2.31 and 2.16 g in the WSEM and VOSEM groups, respectively. RESULTS: During the experimental period, the reduction in serum total cholesterol was 10.6% (P < 0.001) and 8.1% (P < 0.05) greater and in LDL cholesterol was 13.7% (P < 0.01) and 8.6% (P = 0.072) greater in the WSEM and VOSEM groups, respectively, than in the control group. Serum campesterol concentrations decreased 34.5% and 41.3% (P < 0.001) in the WSEM and VOSEM groups, respectively. Serum HDL cholesterol, sitostanol, campestanol, beta-carotene, and fat-soluble vitamin concentrations did not change significantly from baseline. CONCLUSIONS: We conclude that the low-fat, plant stanol ester-containing margarines are effective cholesterol-lowering products in hypercholesterolemic subjects when used as part of a low-fat, low-cholesterol diet. They offer an additional, clinically significant reduction in serum cholesterol concentrations to that obtained with a low-fat diet alone.  (+info)

Occurrence of squalene and sterols in Cellulomonas dehydrogenans (Arnaudi 1942) comb. nov. Hester 1971. (2/310)

The neutral lipid fraction of the photochromogenic, coryneform bacterium Cellulomonas dehydrogenans (Arnaudi 1942) comb. nov. contains the sterol precursor squalene and at least two sterols, cholesterol and beta-sitosterol. The compounds were characterized by mass spectrometry and combination gas-liquid chromatography--mass spectrometry. De novo sterol biosynthetic ability was shown from incorporation of 14C from D-[U-14C]glucose into squalene and the sterol fraction. The squalene concentration approximated 0.002 to 0.005% of the total dry cell weight, and the sterols approximated 0.03 to 0.05%.  (+info)

Serum sterols during stanol ester feeding in a mildly hypercholesterolemic population. (3/310)

We investigated the changes of cholesterol and non-cholesterol sterol metabolism during plant stanol ester margarine feeding in 153 hypercholesterolemic subjects. Rapeseed oil (canola oil) margarine without (n = 51) and with (n = 102) stanol (2 or 3 g/day) ester was used for 1 year. Serum sterols were analyzed with gas-liquid chromatography. The latter showed a small increase in sitostanol peak during stanol ester margarine eating. Cholestanol, campesterol, and sitosterol proportions to cholesterol were significantly reduced by 5-39% (P < 0.05 or less for all) by stanol esters; the higher their baseline proportions the higher were their reductions. The precursor sterol proportions were significantly increased by 10- 46%, and their high baseline levels predicted low reduction of serum cholesterol. The decrease of the scheduled stanol dose from 3 to 2 g/day after 6-month feeding increased serum cholesterol by 5% (P < 0. 001) and serum plant sterol proportions by 8-13% (P < 0.001), but had no consistent effect on precursor sterols. In twelve subjects, the 12-month level of LDL cholesterol exceeded that of baseline; the non-cholesterol sterol proportions suggested that stimulated synthesis with relatively weak absorption inhibition contributed to the non-responsiveness of these subjects. In conclusion, plant stanol ester feeding lowers serum cholesterol in about 88% of subjects, decreases the non-cholesterol sterols that reflect cholesterol absorption, increases the sterols that reflect cholesterol synthesis, but also slightly increases serum plant stanols. Low synthesis and high absorption efficiency of cholesterol results in the greatest benefit from stanol ester consumption.  (+info)

Cholesterol-lowering efficacy of a sitostanol-containing phytosterol mixture with a prudent diet in hyperlipidemic men. (4/310)

BACKGROUND: Dietary plant sterols (phytosterols) have been shown to lower plasma lipid concentrations in animals and humans. However, the effect of phytosterol intake from tall oil on cholesterol and phytosterol metabolism has not been assessed in subjects fed precisely controlled diets. OBJECTIVE: Our objective was to examine the effects of sitostanol-containing phytosterols on plasma lipid and phytosterol concentrations and de novo cholesterol synthesis rate in the context of a controlled diet. DESIGN: Thirty-two hypercholesterolemic men were fed either a diet of prepared foods alone or a diet containing 1.7 g phytosterols/d for 30 d in a parallel study design. RESULTS: No overall effects of diet on total cholesterol concentrations were observed, although concentrations were lower with the phytosterol-enriched than with the control diet on day 30 (P < 0.05). LDL-cholesterol concentrations on day 30 had decreased by 8.9% (P < 0.01) and 24.4% (P < 0.001) with the control and phytosterol-enriched diets, respectively. HDL-cholesterol and triacylglycerol concentrations did not change significantly. Moreover, changes in circulating campesterol and beta-sitosterol concentrations were not significantly different between phytosterol-fed and control subjects. In addition, there were no significant differences in fractional (0.091 +/- 0.028 and 0.091 +/- 0.026 pool/d, respectively) or absolute (0.61 +/- 0.24 and 0.65 +/- 0.23 g/d, respectively) synthesis rates of cholesterol observed between control and phytosterol-fed subjects. CONCLUSION: Addition of blended phytosterols to a prudent North American diet improved plasma LDL-cholesterol concentrations by mechanisms that did not result in significant changes in endogenous cholesterol synthesis in hypercholesterolemic men.  (+info)

Plant sterols and sterolins: a review of their immune-modulating properties. (5/310)

Beta-sitosterol (BSS) and its glycoside (BSSG) are sterol molecules which are synthesized by plants. When humans eat plant foods phytosterols are ingested, and are found in the serum and tissues of healthy individuals, but at concentrations orders of magnitude lower than endogenous cholesterol. Epidemiological studies have correlated a reduced risk of numerous diseases with a diet high in fruits and vegetables, and have concluded that specific molecules, including b-carotene, tocopherols, vitamin C, and flavonoids, confer some of this protective benefit. However, these epidemiologic studies have not examined the potential effect that phytosterols ingested with fruits and vegetables might have on disease risk reduction. In animals, BSS and BSSG have been shown to exhibit anti-inflammatory, anti-neoplastic, anti-pyretic, and immune-modulating activity. A proprietary BSS:BSSG mixture has demonstrated promising results in a number of studies, including in vitro studies, animal models, and human clinical trials. This phytosterol complex seems to target specific T-helper lymphocytes, the Th1 and Th2 cells, helping normalize their functioning and resulting in improved T-lymphocyte and natural killer cell activity. A dampening effect on overactive antibody responses has also been seen, as well as normalization of the DHEA:cortisol ratio. The re-establishment of these immune parameters may be of help in numerous disease processes relating to chronic immune-mediated abnormalities, including chronic viral infections, tuberculosis, rheumatoid arthritis, allergies, cancer, and auto-immune diseases.  (+info)

Biosynthesis of bitter acids in hops. A (13)C-NMR and (2)H-NMR study on the building blocks of humulone. (6/310)

The biosynthesis of humulone, an antibacterial bitter acid from hops, was studied by isotope-incorporation experiments using (13)C-labelled glucose or (2)H(2)O. (13)C enrichments, (2)H enrichments and (13)C(13)C coupling patterns identify isovaleryl-CoA, malonyl-CoA and dimethylallyl pyrophosphate as precursors for humulone. Dimethylallyl pyrophosphate, which serves as a building block for the bitter acid, is generated via the deoxyxylulose pathway of terpenoid biosynthesis. The data confirm that a symmetrical intermediate is involved in humulone formation.  (+info)

Sitostanol administered in lecithin micelles potently reduces cholesterol absorption in humans. (7/310)

BACKGROUND: Phytosterol feeding in human clinical trials has had generally small and inconsistent effects on serum cholesterol concentrations, raising doubts about the importance of phytosterols in natural diets and supplements. OBJECTIVE: The hypothesis tested was that the low intestinal bioavailability of purified phytosterols can be increased by formulation with lecithin. DESIGN: The ability of sitostanol to reduce cholesterol absorption was measured directly by including hexadeuterated cholesterol tracer in a standard test breakfast and measuring plasma tracer concentration 4 and 5 d later by gas chromatography-negative ion mass spectrometry. The tracer amount after a test meal containing sitostanol was compared with that after an identical meal containing placebo. Each subject served as his or her own control and the order of testing was random. Sitostanol was formulated either as a powder or as a sonicated micellar solution with lecithin. A total of 38 single-meal tests were performed in 6 healthy subjects. RESULTS: Sitostanol powder (1 g) reduced cholesterol absorption by only 11.3 +/- 7.4% (P = 0.2), confirming in vitro data showing poor solubility of sitostanol powder in artificial bile. In contrast, sitostanol in lecithin micelles reduced cholesterol absorption by 36.7 +/- 4.2% (P = 0.003) at a dose of 700 mg and by 34.4 +/- 5.8% (P = 0.01) at a dose of 300 mg. CONCLUSIONS: Sitostanol reduced cholesterol absorption at doses lower than reported previously, but only if presented in lecithin micelles. Properly formulated sitostanol as well as naturally occurring complexes of phytosterol and phospholipid might be therapeutically useful for cholesterol lowering.  (+info)

The cholesterol-lowering action of plant stanol esters. (8/310)

Plant sterols and stanols derived from wood pulp and vegetable oils lower total and LDL cholesterol by inhibiting cholesterol absorption from the intestine in humans. Plant stanols are virtually unabsorbable, which makes them more ideal hypocholesterolemic agents than plant sterols. The esterification of plant stanols has allowed their incorporation into various foods such as margarine without changing the taste and texture of those foods. Plant stanol esters at a level of 2-3 g/d have been shown to reduce LDL cholesterol by 10-15% without side effects. Plant stanol esters appear to be a helpful dietary adjunct to a prudent diet to lower cholesterol.  (+info)