Requirement of FADD for tumor necrosis factor-induced activation of acid sphingomyelinase. (41/128527)

The generation of mice strains deficient for select members of the signaling complex of the 55-kDa tumor necrosis factor receptor (TNF-R55) has allowed the assignment of specific cellular responses to distinct TNF-R55-associated proteins. In particular, the TNF-R55-associated protein FADD seems to be responsible for recruitment and subsequent activation of caspase 8. In this report we demonstrate the requirement of FADD for TNF-induced activation of endosomal acid sphingomyelinase (A-SMase). In primary embryonic fibroblasts from FADD-deficient mice the activation of A-SMase by TNF-R55 ligation was almost completely impaired. This effect is specific in that other TNF responses like activation of NF-kappaB or neutral (N-)SMase remained unaffected. In addition, interleukin-1-induced activation of A-SMase in FADD-deficient cells was unaltered. In FADD-/- embryonic fibroblasts reconstituted by transfection with a FADD cDNA expression construct, the TNF responsiveness of A-SMase was restored. The results of this study suggest that FADD, in addition to its role in triggering a proapoptotic caspase cascade, is required for TNF-induced activation of A-SMase.  (+info)

Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Involvement of Jak2 in the stimulation of phosphatidylinositol 3-kinase. (42/128527)

Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates many of the biological activities of human neutrophils. The signaling pathways via which these effects are mediated are not fully understood. We have shown previously that GM-CSF treatment of human neutrophils activates the Janus kinase/signal transducers and activators of transcription (Jak/STAT) pathway and, more specifically, Jak2, STAT3, and STAT5B in neutrophils. GM-CSF also stimulates the activity of the phosphatidylinositol 3-kinase (PI3-kinase) in a tyrosine kinase-dependent manner. Here we report that pretreating the cells with a Jak2 inhibitor (AG-490) abolishes tyrosine phosphorylation of the p85 subunit of PI3-kinase induced by GM-CSF. Furthermore, p85 was found to associate with Jak2, but not with Lyn, in stimulated cells in situ and with its autophosphorylated form in vitro; however, Jak2 did not bind to either of the two Src homology 2 (SH2) domains of the p85 subunit of PI3-kinase. Although STAT5B bound to the carboxyl-terminal SH2 domain of p85, it was absent from the complex containing PI3-kinase and Jak2. These results suggest that stimulation of the activity of PI3-kinase induced by GM-CSF is mediated by Jak2 and that the association between Jak2 and p85 depends on an adaptor protein yet to be identified.  (+info)

Oligomerization and scaffolding functions of the erythropoietin receptor cytoplasmic tail. (43/128527)

Signal transduction by the erythropoietin receptor (EPOR) is activated by ligand-mediated receptor homodimerization. However, the relationship between extracellular and intracellular domain oligomerization remains poorly understood. To assess the requirements for dimerization of receptor cytoplasmic sequences for signaling, we overexpressed mutant EPORs in combination with wild-type (WT) EPOR to drive formation of heterodimeric (i.e. WT-mutant) receptor complexes. Dimerization of the membrane-proximal portion of the EPOR cytoplasmic region was found to be critical for the initiation of mitogenic signaling. However, dimerization of the entire EPOR cytoplasmic region was not required. To examine this process more closely, we generated chimeras between the intracellular and transmembrane portions of the EPOR and the extracellular domains of the interleukin-2 receptor beta and gammac chains. These chimeras allowed us to assess more precisely the signaling role of each receptor chain because only heterodimers of WT and mutant receptor chimeras form in the presence of interleukin-2. Coexpression studies demonstrated that a functional receptor complex requires the membrane-proximal region of each receptor subunit in the oligomer to permit activation of JAK2 but only one membrane-distal tail to activate STAT5 and to support cell proliferation. Thus, this study defines key relationships involved in the assembly and activation of the EPOR signal transduction complex which may be applicable to other homodimeric cytokine receptors.  (+info)

C-terminal Src kinase associates with ligand-stimulated insulin-like growth factor-I receptor. (44/128527)

Increased expression of the insulin-like growth factor-I receptor (IGF-IR) protein-tyrosine kinase occurs in several kinds of cancer and induces neoplastic transformation in fibroblast cell lines. The transformed phenotype can be reversed by interfering with the function of the IGF-IR. The IGF-IR is required for transformation by a number of viral and cellular oncoproteins, including SV40 large T antigen, Ras, Raf, and Src. The IGF-IR is a substrate for Src in vitro and is phosphorylated in v-Src-transformed cells. We observed that the IGF-IR and IR associated with the C-terminal Src kinase (CSK) following ligand stimulation. We found that the SH2 domain of CSK binds to the tyrosine-phosphorylated form of IGF-IR and IR. We determined the tyrosine residues in the IGF-IR and in the IR responsible for this interaction. We also observed that fibroblasts stimulated with IGF-I or insulin showed a rapid and transient decrease in c-Src tyrosine kinase activity. The results suggest that c-Src and CSK are involved in IGF-IR and IR signaling and that the interaction of CSK with the IGF-IR may play a role in the decrease in c-Src activity following IGF-I stimulation.  (+info)

Identification and cloning of xp95, a putative signal transduction protein in Xenopus oocytes. (45/128527)

A 95-kDa protein in Xenopus oocytes, Xp95, was shown to be phosphorylated from the first through the second meiotic divisions during progesterone-induced oocyte maturation. Xp95 was purified and cloned. The Xp95 protein sequence exhibited homology to mouse Rhophilin, budding yeast Bro1, and Aspergillus PalA, all of which are implicated in signal transduction. It also contained three conserved features including seven conserved tyrosines, a phosphorylation consensus sequence for the Src family of tyrosine kinases, and a proline-rich domain near the C terminus that contains multiple SH3 domain-binding motifs. We showed the following: 1) that both Xp95 isolated from Xenopus oocytes and a synthetic peptide containing the Src phosphorylation consensus sequence of Xp95 were phosphorylated in vitro by Src kinase and to a lesser extent by Fyn kinase; 2) Xp95 from Xenopus oocytes or eggs was recognized by an anti-phosphotyrosine antibody, and the relative abundance of tyrosine-phosphorylated Xp95 increased during oocyte maturation; and 3) microinjection of deregulated Src mRNA into Xenopus oocytes increased the abundance of tyrosine-phosphorylated Xp95. These results suggest that Xp95 is an element in a tyrosine kinase signaling pathway that may be involved in progesterone-induced Xenopus oocyte maturation.  (+info)

Vascular endothelial growth factor (VEGF) receptor II-derived peptides inhibit VEGF. (46/128527)

Vascular endothelial growth factor (VEGF) directly stimulates endothelial cell proliferation and migration via tyrosine kinase receptors of the split kinase domain family. It mediates vascular growth and angiogenesis in the embryo but also in the adult in a variety of physiological and pathological conditions. The potential binding site of VEGF with its receptor was identified using cellulose-bound overlapping peptides of the extracytosolic part of the human vascular endothelial growth factor receptor II (VEGFR II). Thus, a peptide originating from the third globular domain of the VEGFR II comprising residues 247RTELNVGIDFNWEYP261 was revealed as contiguous sequence stretch, which bound 125I-VEGF165. A systematic replacement with L-amino acids within the peptide representing the putative VEGF-binding site on VEGFR II indicates Asp255 as the hydrophilic key residue for binding. The dimerized peptide (RTELNVGIDFNWEYPAS)2K inhibits VEGF165 binding with an IC50 of 0.5 microM on extracellular VEGFR II fragments and 30 microM on human umbilical vein cells. VEGF165-stimulated autophosphorylation of VEGFR II as well as proliferation and migration of microvascular endothelial cells was inhibited by the monomeric peptide RTELNVGIDFNWEYPASK at a half-maximal concentration of 3-10, 0.1, and 0.1 microM, respectively. We conclude that transduction of the VEGF165 signal can be interrupted with a peptide derived from the third Ig-like domain of VEGFR II by blockade of VEGF165 binding to its receptor.  (+info)

Transforming growth factor-beta induces formation of a dithiothreitol-resistant type I/Type II receptor complex in live cells. (47/128527)

Transforming growth factor-beta (TGF-beta) binds to and signals via two serine-threonine kinase receptors, the type I (TbetaRI) and type II (TbetaRII) receptors. We have used different and complementary techniques to study the physical nature and ligand dependence of the complex formed by TbetaRI and TbetaRII. Velocity centrifugation of endogenous receptors suggests that ligand-bound TbetaRI and TbetaRII form a heteromeric complex that is most likely a heterotetramer. Antibody-mediated immunofluorescence co-patching of epitope-tagged receptors provides the first evidence in live cells that TbetaRI. TbetaRII complex formation occurs at a low but measurable degree in the absence of ligand, increasing significantly after TGF-beta binding. In addition, we demonstrate that pretreatment of cells with dithiothreitol, which inhibits the binding of TGF-beta to TbetaRI, does not prevent formation of the TbetaRI.TbetaRII complex, but increases its sensitivity to detergent and prevents TGF-beta-activated TbetaRI from phosphorylating Smad3 in vitro. This indicates that either a specific conformation of the TbetaRI. TbetaRII complex, disrupted by dithiothreitol, or direct binding of TGF-beta to TbetaRI is required for signaling.  (+info)

Cell adhesion regulates the interaction between the docking protein p130(Cas) and the 14-3-3 proteins. (48/128527)

Integrin ligand binding induces a signaling complex formation via the direct association of the docking protein p130(Cas) (Cas) with diverse molecules. We report here that the 14-3-3zeta protein interacts with Cas in the yeast two-hybrid assay. We also found that the two proteins associate in mammalian cells and that this interaction takes place in a phosphoserine-dependent manner, because treatment of Cas with a serine phosphatase greatly reduced its ability to bind 14-3-3zeta. Furthermore, the Cas-14-3-3zeta interaction was found to be regulated by integrin-mediated cell adhesion. Thus, when cells are detached from the extracellular matrix, the binding of Cas to 14-3-3zeta is greatly diminished, whereas replating the cells onto fibronectin rapidly induces the association. Consistent with these results, we found that the subcellular localization of Cas and 14-3-3 is also regulated by integrin ligand binding and that the two proteins display a significant co-localization during cell attachment to the extracellular matrix. In conclusion, our results demonstrate that 14-3-3 proteins participate in integrin-activated signaling pathways through their interaction with Cas, which, in turn, may contribute to important biological responses regulated by cell adhesion to the extracellular matrix.  (+info)