Suppression of Moloney sarcoma virus immunity following sensitization with attenuated virus. (1/1451)

Murine sarcoma virus (Moloney strain) (MSV-M)-induced tumors are unusual in that they regularly appear less than 2 weeks after virus inoculation, progress for 1 to 2 weeks, and are rejected by normal adult BALB/c mice. Rejectio leaves the animals immune to tumor induction. In the present study, presensitization of normal adult BALB/c mice with attenuated MSV-M resulted in an altered pattern of tumor immunity. Injection of active MSV-M into the presensitized animals resulted in tumor induction and rejection similar to that observed in normal animals, but rejection failed to produce protection against the secondary inoculation with MSV-M. After the second inoculation with active MSV-M, tumors appeared and progressed but ultimately were rejected. Over 80% of the mice died, 25% after the primary challenge and the remainder after the secondary challenge. At death, all mice had histological evidence of leukemia which was the probable cause of death. The animals that died following the secondary challenge also had evidence of disseminated MSV-M. Solid tumor nodules were found in skeletal muscle distant from the original site of inoculation, and active MSV-M was isolated from spleen and lungs. The possibility that the results were produced by specific suppression of MSV-Moloney leukemia virus immunity is discussed.  (+info)

11q23.1 and 11q25-qter YACs suppress tumour growth in vivo. (2/1451)

Frequent allelic deletion at chromosome 11q22-q23.1 has been described in breast cancer and a number of other malignancies, suggesting putative tumour suppressor gene(s) within the approximately 8 Mb deleted region. In addition, we recently described another locus, at the 11q25-qter region, frequently deleted in breast cancer, suggesting additional tumour suppressor gene(s) in this approximately 2 Mb deleted region. An 11q YAC contig was accessed and three YACs, one containing the candidate gene ATM at 11q23.1, and two contiguous YACs (overlapping for approximately 400-600 kb) overlying most of the 11q25 deleted region, were retrofitted with a G418 resistance marker and transfected into murine A9 fibrosarcoma cells. Selected A9 transfectant clones (and control untransfected and 'irrelevant' alphoid YAC transfectant A9 clones) were assayed for in vivo tumorigenicity in athymic female Balb c-nu/nu mice. All the 11q YAC transfectant clones demonstrated significant tumour suppression compared to the control untransfected and 'irrelevant' YAC transfected A9 cells. These results define two discrete tumour suppressor loci on chromosome 11q by functional complementation, one to a approximately 1.2 Mb region on 11q23.1 (containing the ATM locus) and another to a approximately 400-600 kb subterminal region on 11q25-qter.  (+info)

Quantification of tumour vasculature and hypoxia by immunohistochemical staining and HbO2 saturation measurements. (3/1451)

Despite the possibility that tumour hypoxia may limit radiotherapeutic response, the underlying mechanisms remain poorly understood. A new methodology has been developed in which information from several sophisticated techniques is combined and analysed at a microregional level. First, tumour oxygen availability is spatially defined by measuring intravascular blood oxygen saturations (HbO2) cryospectrophotometrically in frozen tumour blocks. Second, hypoxic development is quantified in adjacent sections using immunohistochemical detection of a fluorescently conjugated monoclonal antibody (ELK3-51) to a nitroheterocyclic hypoxia marker (EF5), thereby providing information relating to both the oxygen consumption rates and the effective oxygen diffusion distances. Third, a combination of fluorescent (Hoechst 33342 or DiOC7(3)) and immunohistological (PECAM-1/CD31) stains is used to define the anatomical vascular densities and the fraction of blood vessels containing flow. Using a computer-interfaced microscope stage, image analysis software and a 3-CCD colour video camera, multiple images are digitized, combined to form a photo-montage and revisited after each of the three staining protocols. By applying image registration techniques, the spatial distribution of HbO2 saturations is matched to corresponding hypoxic marker intensities in adjacent sections. This permits vascular configuration to be related to oxygen availability and allows the hypoxic marker intensities to be quantitated in situ.  (+info)

Combination of theanine with doxorubicin inhibits hepatic metastasis of M5076 ovarian sarcoma. (4/1451)

Theanine is a peculiar amino acid existing in green tea leaves, which was previously indicated to enhance the antitumor activity of doxorubicin. In the present study, the effect of combination of theanine with doxorubicin against hepatic metastasis of M5076 ovarian sarcoma was investigated. The primary tumor was significantly reduced by the combined treatment on M5076 transplanted (s.c.) mice. The liver weight of control mice increased to twice the normal level because of hepatic metastasis of M5076. In contrast, the injection of doxorubicin alone or theanine plus doxorubicin suppressed the increase in liver weight and inhibited hepatic metastasis. Moreover, the liver weights and metastasis scores demonstrated that theanine enhanced the inhibition of hepatic metastasis induced by doxorubicin. Furthermore, in vitro experiments indicated that theanine increased the intracellular concentration of doxorubicin remaining in M5076 cells. This action suggests that theanine leads the enhancement of the suppressive efficacy of doxorubicin on hepatic metastasis in vivo. Therefore, it was proved that theanine increased not only the antitumor activity on primary tumor but also the metastasis-suppressive efficacy of doxorubicin. The effect of theanine on the efficacy of antitumor agents is expected to be applicable in clinical cancer chemotherapy.  (+info)

Inhibition of the rous sarcoma virus long terminal repeat-driven transcription by in vitro methylation: different sensitivity in permissive chicken cells versus mammalian cells. (5/1451)

Rous sarcoma virus (RSV) enhancer sequences in the long terminal repeat (LTR) have previously been shown to be sensitive to CpG methylation. We report further that the high density methylation of the RSV LTR-driven chloramphenicol acetyltransferase reporter is needed for full transcriptional inhibition in chicken embryo fibroblasts and for suppression of tumorigenicity of the RSV proviral DNA in chickens. In nonpermissive mammalian cells, however, the low density methylation is sufficient for full inhibition. The time course of inhibition differs strikingly in avian and mammalian cells: although immediately inhibited in mammalian cells, the methylated RSV LTR-driven reporter is fully inhibited with a significant delay after transfection in avian cells. Moreover, transcriptional inhibition can be overridden by transfection with a high dose of the methylated reporter plasmid in chicken cells but not in hamster cells. The LTR, v-src, LTR proviral DNA is easily capable of inducing sarcomas in chickens but not in hamsters. In contrast, Moloney murine leukemia virus LTR-driven v-src induces sarcomas in hamsters with high incidence. Therefore, the repression of integrated RSV proviruses in rodent cells is directed against the LTR.  (+info)

Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice. (6/1451)

We have evaluated the ability of bioballistic "gene gun" immunization of mice with plasmid DNA encoding clinically relevant tumor antigens to induce protective antitumor immunity. Mice immunized with plasmid cDNA encoding the cervical carcinoma-associated human papillomavirus 16-E7 gene product exhibited potent anti-E7-specific cytotoxic T lymphocytes and were protected completely against a subsequent challenge with the E7+ C3 sarcoma. Of perhaps greater clinical interest, genetic immunization using cDNA encoding the normal, germline-encoded murine melanosomal protein tyrosinase-related protein-2 (TRP-2) resulted in delayed outgrowth of TRP-2+ B16 melanoma in mice and was associated with an in vivo activation of TRP-2-specific cytotoxic T lymphocytes. Codelivery of plasmid cDNA encoding TRP-2 and the T helper 1-biasing cytokine murine interleukin-12 considerably enhanced the antitumor efficacy of these gene-based melanoma vaccines.  (+info)

Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. (7/1451)

Poly(L-glutamic acid)-paclitaxel (PG-TXL) is a new water-soluble paclitaxel derivative that has shown remarkable antitumor activity against both ovarian and breast tumors. The purpose of this study was to test whether the antitumor efficacy of PG-TXL depends on tumor type, as is the case for paclitaxel, and to test whether paclitaxel-resistant tumors could be responsive to PG-TXL. We evaluated the therapeutic activity of PG-TXL against four syngeneic murine tumors (MCa-4, MCa-35, HCa-1, and FSa-II) inoculated i.m. into C3Hf/Kam mice, a human SKOV3ip1 ovarian tumor injected i.p. into nude mice, and a human MDA-MB-435Lung2 breast tumor grown in the mammary fat pad of nude mice. Two paclitaxel-responsive murine tumors, MCa-4 and MCa-35, showed significant growth delay with PG-TXL given as a single i.v. injection at its maximum tolerated dose of 160 mg of equivalent paclitaxel/kg or even at a lower dose of 120 mg of equivalent paclitaxel/kg. The other two murine tumors, HCa-1 and FSa-II, did not respond particularly well to either of the two agents, although significant growth delay was observed for both tumors with PG-TXL. In mice with SKOV3ip1 tumors, the median survival times for mice treated with PG alone and PG-TXL at doses of 60 or 120 mg of equivalent paclitaxel/kg were 43, 61, and 75 days, respectively; no survival difference was found between paclitaxel-treated and Cremophor vehicle-treated mice. In mice with MDA-MB-435Lung2 tumor, PG-TXL at a dose of 120 mg of equivalent paclitaxel/kg produced regression of the tumor in 50% of the animals, and in the remaining mice, micrometastases in the lung were found only in 25% of the animals. In comparison, treatment with paclitaxel at 60 mg/kg did not result in tumor regression, and the rate of lung metastases was 42%. These results clearly demonstrate that PG-TXL has significant therapeutic activity against breast and ovarian tumors tested in this study. Future studies to elucidate the mechanism of action of PG-TXL and to assess its clinical applications are warranted.  (+info)

Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. (8/1451)

In this study, we show that N-acetylcysteine (NAC), a precursor of glutathione and an intracellular free radical scavenger, almost completely prevented hepatocyte growth factor (HGF)-suppressed growth of Sarcoma 180 and Meth A cells, and HGF-induced apoptosis, assessed by DNA fragmentation, and increase in caspase-3 activity, in Sarcoma 180 cells. The reduced form of glutathione also prevented HGF-suppressed growth of the cells as effective as NAC. Ascorbic acid partially prevented the effect of HGF, but other antioxidants such as superoxide dismutase, catalase, and vitamin E, and the free radical spin traps N-t-butyl-alpha-phenylnitrone and 3,3,5, 5-tetramethyl-1-pyrroline-1-oxide did not have protective effects. HGF caused morphological changes of the cells, many cells showing condensation and rounding, and enhanced the generation of intracellular reactive oxygen species (ROS) as judged by flow cytometric analysis using 2',7'-dichlorofluorescein diacetate. NAC completely prevented both HGF-induced morphological changes and the enhancement of ROS generation in the cells. However, NAC did not prevent the HGF-induced scattering of Madin-Darby canine kidney cells. To our knowledge, this is the first report that HGF stimulates the production of ROS, and our results suggest the involvement of oxidative stress in the mechanism by which HGF induces growth suppression of tumor cells.  (+info)