Resistance to mammary tumorigenesis in Copenhagen rats is associated with the loss of preneoplastic lesions. (1/410)

The resistance of Copenhagen (Cop) rats to mammary tumor development has recently been linked to three loci, but the genes have yet to be cloned and the mechanism of resistance is still largely unknown. In order to determine the cellular events associated with resistance, we prepared mammary whole mounts from Cop and susceptible Wistar Furth (WF) rats 0, 15, 30, 45 and 60 days after treatment with 50 mg/kg N-methyl-N-nitrosourea (MNU). At 15 days, treated rats of both strains had significantly more undifferentiated structures [terminal end buds (TEBs)] and significantly fewer differentiated structures [alveolar buds (ABs)] than untreated rats. Treated Cop rats, however, had significantly more TEBs and fewer ABs than age-matched, treated WF rats. Histological analysis of preneoplastic lesions tentatively identified from the whole mounts showed that like WF rats, Cop rats developed early preneoplastic lesions [intraductal proliferations (IDPs)] by 15 days post-MNU treatment. Unlike IDPs from WF rats, however, the IDPs in Cop rats then decreased in number until they were absent 60 days post-MNU treatment. Furthermore, they failed to progress into more advanced lesions such as ductal carcinomas in situ (DCIS). Finally, we found G-->A activating mutations in codon 12 of the Ha-ras gene in 60% of IDPs from Cop rats and 75% of IDPs from WF rats. Our results show that resistance in Cop rats is not due to a target cell population for the carcinogen that is smaller than in susceptible rats or to the failure of the carcinogen to inhibit mammary gland differentiation. Furthermore, we have shown that Cop rats develop preneoplastic IDPs that harbor Ha-ras mutations but, unlike IDPs in susceptible strains, they fail to progress and ultimately disappear.  (+info)

Enzymatic synthesis of alpha3'sialylated and multiply alpha3fucosylated biantennary polylactosamines. A bivalent [sialyl diLex]-saccharide inhibited lymphocyte-endothelium adhesion organ-selectively. (2/410)

Multifucosylated sialo-polylactosamines are known to be high affinity ligands for E-selectin. PSGL-1, the physiological ligand of P-selectin, is decorated in HL-60 cells by a sialylated and triply fucosylated polylactosamine that is believed to be of functional importance. Mimicking some of these saccharide structures, we have synthesized enzymatically a bivalent [sialyl diLex]-glycan, Neu5Acalpha2-3'Lexbeta1-3'Lexbeta1-3'(Neu5Acalpha2-3'Lexbeta1-3Lexbe ta1-6')LN [where Neu5Ac is N-acetylneuraminic acid, Lex is the trisaccharide Galbeta1-4(Fucalpha1-3)GlcNAc and LN is the disaccharide Galbeta1-4GlcNAc]. Several structurally related, novel polylactosamine glycans were also constructed. The inhibitory effects of these glycans on two L-selectin-dependent, lymphocyte-to-endothelium adhesion processes of rats were analysed in ex-vivo Stamper-Woodruff binding assays. The IC50 value of the bivalent [sialyl diLex]-glycan at lymph node high endothelium was 50 nm, but at the capillaries of rejecting cardiac allografts it was only 5 nm. At both adhesion sites, the inhibition was completely dependent on the presence of fucose units on the sialylated LN units of the inhibitor saccharide. These data show that the bivalent [sialyl diLex]-glycan is a high affinity ligand for L-selectin, and may reduce extravasation of lymphocytes at sites of inflammation in vivo without severely endangering the normal recirculation of lymphocytes via lymph nodes.  (+info)

Resistance to remnant nephropathy in the Wistar-Furth rat. (3/410)

The Wistar-Furth rat, an inbred strain resistant to actions of mineralocorticoids, was used to study the concept that mineralocorticoids contribute to progressive renal injury. It was postulated that if chronic nephropathy depends on aldosterone and if Wistar-Furth rats are resistant to aldosterone, remnant nephropathy would be attenuated in Wistar-Furth rats. Wistar-Furth rats and control Wistar rats were subjected to 5/6 nephrectomy or a sham procedure and then followed for 4 wk. Renal ablation resulted in hypertension at 4 wk in both strains (164+/-5 [Wistar-Furth] versus 184+/-7 [Wistar] mm Hg mean arterial pressure), with sham animals remaining normotensive (134+/-6 mm Hg). Renal damage in response to 5/6 nephrectomy was greatly decreased in Wistar-Furth rats compared with Wistar rats. Albuminuria was markedly less in Wistar-Furth rats (12.7+/-4.2 [Wistar-Furth] versus 97.4+/-22.6 [Wistar] mg/d per 100 g body wt, P<0.01). Glomerular damage, consisting of mesangial proliferation, mesangial lysis, and segmental necrosis, was observed in 42% of glomeruli from Wistar rats but in 0% of glomeruli from Wistar-Furth rats (P<0.01). To address the possibility that higher BP in partially nephrectomized Wistar rats mediated the greater renal damage, the study was repeated, with Wistar rats (not Wistar-Furth rats) being treated with a hydralazine-reserpine-hydrochlorothiazide regimen. Although this antihypertensive regimen equalized BP (conscious systolic) (144+/-8 mm Hg [Wistar] versus 157+/-7 mm Hg [Wistar-Furth] at 4 wk), albuminuria remained more than 10-fold greater in Wistar rats. In summary, renal damage upon 5/6 nephrectomy was markedly reduced in Wistar-Furth rats, a finding not attributable to reduced systemic BP. Since Wistar-Furth rats have been shown previously to be resistant to the actions of mineralocorticoids, the data from the present study support the hypothesis that aldosterone mediates, at least in part, the renal injury attendant to renal mass reduction.  (+info)

Prevention of cardiac allograft arteriosclerosis by protein tyrosine kinase inhibitor selective for platelet-derived growth factor receptor. (4/410)

BACKGROUND: Increased immunoreactivity of platelet-derived growth factor (PDGF)-AA, -Ralpha, and -Rbeta in intimal cells correlates with the development of cardiac allograft arteriosclerosis, a condition for which there is little or no current therapy. Therefore, we hypothesized that PDGF may have a rate-limiting role in the development of this disease. METHODS AND RESULTS: The hypothesis was tested in a rat model of heterotopic cardiac and aortic allografts using dark agouti (AG-B4, RT1(a)) donors and Wistar-Furth (AG-B2, RT1(u)) recipients. The recipients received CGP 53716, a selective PDGF-R protein tyrosine kinase inhibitor, 50 mg. kg-1. d-1, or vehicle for 60 days. Cardiac allograft recipients also received background cyclosporin A immunosuppression. Our results demonstrate that CGP 53716 significantly reduced the incidence and intensity of arteriosclerotic lesions in rat cardiac and aortic allograft recipients. When rat coronary smooth muscle cells were stimulated in vitro with PDGF-AA or -BB in the presence of interleukin-1beta or tumor necrosis factor-alpha, CGP 53716 significantly inhibited only AA-ligand-induced but not BB-ligand-induced replication. Concomitantly, in quantitative reverse transcriptase-polymerase chain reaction, interleukin-1beta or tumor necrosis factor-alpha stimulation specifically upregulated the expression of PDGF-Ralpha mRNA but not of other ligand or receptor genes in cultured smooth muscle cells. CONCLUSIONS: We conclude that a PDGF-AA/Ralpha-dependent cycle is induced in the generation of allograft arteriosclerosis that may be inhibited by blocking of signaling downstream of PDGF-R.  (+info)

T cell reconstitution of BB/W rats after the initiation of insulitis precipitates the onset of diabetes. (5/410)

One of the diabetes susceptibility genes of the BB/W (Biobreeding/Worcester) rat maps to the lyp locus on chromosome 4. The BB/W lyp allele is responsible for a severe peripheral T lymphopenia. Correction of this lymphopenia by transfer of normal, histocompatible T cells prevents diabetes, providing T cell reconstitution is initiated before insulitis. We have analyzed this time-dependent regulation of the diabetogenic process by normal T cells. We demonstrate that T cell reconstitution after the initiation of insulitis precipitates the onset of diabetes through the recruitment of donor T cells to the autoimmune process. This inability of normal T cells to regulate primed diabetogenic BB/W T cells and their own autoreactive potential were observed when normal T cells outnumbered pathogenic T cells by approximately 1000-fold. Analysis of donor-derived T cells recovered from BB/W rats that were reconstituted before insulitis, and hence protected from diabetes, demonstrates that early T cell reconstitution of BB/W rats does not result in a long term physical or functional depletion of islet cell-specific T cell precursors among donor cells or in the expansion of T cells that can regulate the activation and expansion of diabetogenic T cells.  (+info)

Immunomodulatory functions of low-molecular weight hyaluronate in an acute rat renal allograft rejection model. (6/410)

Low molecular weight hyaluronate (LMW-HA) blocks interactions between T lymphocyte CD44 and hyaluronate (HA), a heteropolysaccharide that is expressed on the surface of endothelial cells and ubiquitously in the extracellular matrix. This study was undertaken to assess the ability of LMW-HA to modify the course of experimental acute renal allograft rejection. Lewis (LEW) rats were bilaterally nephrectomized and received an orthotopic, fully MHC-mismatched, Wistar-Furth (WF) kidney transplant. Animals received either no treatment, low doses of cyclosporin A (CsA) on days 0 to 5, LMW-HA on days 0 to 5, or CsA plus LMW-HA on days 0 to 5 after transplantation. With no treatment, CsA monotherapy, or HA monotherapy, animals rejected their allografts at a median of 15, 13, and 7.5 d, respectively (P = NS). In contrast, combined CsA plus LMW-HA therapy prevented acute rejection and significantly prolonged graft survival (P = 0.008) to a median of 49.0 d. CsA/LMW-HA-treated grafts also demonstrated better preservation of renal function at day 30 (serum creatinine level, 1.38+/-0.8 mg/dl), compared with surviving animals treated with CsA alone (2.9+/-0.55 mg/dl, P<0.05). Histologic graft analysis of CsA/LMW-HA-treated animals at day 7 after transplantation showed minimal rejection and leukocyte infiltration, compared with all other groups. Intragraft gene expression analysis, using semiquantitative reverse transcription-PCR, at the same time point showed reductions of CD4, CD8, and interferon-gamma transcript levels in the combined-treatment group. This is the first study demonstrating the immunomodulatory functions of LMW-HA in vivo in the setting of organ transplantation. Defining the exact mechanisms that underlie this immunomodulation may provide the rationale to develop novel strategies for use in clinical transplantation.  (+info)

VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway. (7/410)

It appears that the expression of vascular endothelial growth factor (VEGF) is increased during brain injury and thus may contribute to disruption of the blood-brain barrier (BBB) during cerebrovascular trauma. The first goal of this study was to determine the effect of VEGF on permeability of the BBB in vivo. The second goal was to determine possible cellular mechanisms by which VEGF increases permeability of the BBB. We examined the pial microcirculation in rats using intravital fluorescence microscopy. Permeability of the BBB [clearance of FITC-labeled dextran of molecular mass 10,000 Da (FITC-dextran-10K)] and diameter of pial arterioles were measured in absence and presence of VEGF (0.01 and 0.1 nM). During superfusion with vehicle (saline), clearance of FITC-dextran-10K from pial vessels was minimal and diameter of pial arterioles remained constant. Topical application of VEGF (0.01 nM) did not alter permeability of the BBB to FITC-dextran-10K or arteriolar diameter. However, superfusion with VEGF (0.1 nM) produced a marked increase in clearance of FITC-dextran-10K and a modest dilatation of pial arterioles. To determine a potential role for nitric oxide and stimulation of soluble guanylate cyclase in VEGF-induced increases in permeability of the BBB and arteriolar dilatation, we examined the effects of NG-monomethyl-L-arginine (L-NMMA; 10 microM) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1.0 microM), respectively. L-NMMA and ODQ inhibited VEGF-induced increases in permeability of the BBB and arteriolar dilatation. The findings of the present study suggest that VEGF, which appears to be increased in brain tissue during cerebrovascular trauma, increases the permeability of the BBB via the synthesis/release of nitric oxide and subsequent activation of soluble guanylate cyclase.  (+info)

Monitoring of rat islet allografts with dithizone after induction of donor specific transplant tolerance by intrathymic administration of soluble alloantigens. (8/410)

Transplantation of whole pancreas or pancreatic islets remains a promising approach to treatment of diabetes mellitus. Since there is no efficient method presently known for in vivo detection of pancreatic islet rejection, we have utilized dithizone [DTZ] to monitor the survival of transplanted islet allografts following the induction of tolerance by a new strategy of deliberate introduction of donor antigens into the adult thymus. In this study, we examined the morphology of islet allografts in vivo and in vitro following pretreatment with intrathymic (IT) inoculation of 2 mg soluble Ag obtained from 3M KCl extracts of resting T-cells with or without ALS immunosuppression in the WF-to-Lewis combination. Fresh isolated rat islets stained pink 3-5 minutes following exposure to medium containing 0.12 mM DTZ solution in DMSO. Intravenous (i.v.) injection of DTZ solution into unmodified recipients of islet allografts that had rejected their grafts showed massive degranulation of islets which did not stain pink with DTZ. This was confirmed by microscopic finding of fibrosis and lymphocytic infiltration. In contrast, i.v. injection of DTZ solution into long-term recipients of islet allografts at 50, 100, and 150 days after transplantation showed viable islet cells which stained crimson red with DTZ and the findings were confirmed with microscopic sections. This study demonstrates that DTZ is an effective means of in vivo and in vitro identification of transplanted pancreatic islets and suggests that this strategy may have potential clinical application in the diagnosis of the pancreatic islet rejection.  (+info)