Ergoline derivative LEK-8829-induced turning behavior in rats with unilateral striatal ibotenic acid lesions: interaction with bromocriptine. (1/2795)

LEK-8829 [9,10-didehydro-N-methyl-(2-propynyl)-6-methyl-8- aminomethylergoline bimaleinate] is an antagonist of dopamine D2 receptors and serotonin (5-HT)2 and 5-HT1A receptors in intact animals and a D1 receptor agonist in dopamine-depleted animals. In the present study, we used rats with unilateral striatal lesions with ibotenic acid (IA) to investigate the dopamine receptor activities of LEK-8829 in a model with innervated dopamine receptors. The IA-lesioned rats circled ipsilaterally when challenged with apomorphine, the mixed agonist on D1/D2 receptors. LEK-8829 induced a dose-dependent contralateral turning that was blocked by D1 receptor antagonist SCH-23390. The treatment with D1 receptor agonist SKF-82958 induced ipsilateral turning, whereas the treatment with D2 receptor antagonist haloperidol induced contralateral posture. The combined treatment with SKF-82958 and haloperidol resulted in a weak contralateral turning, indicating the possible receptor mechanism of contralateral turning induced by LEK-8829. Bromocriptine induced a weak ipsilateral turning that was blocked by haloperidol. The ipsilateral turning induced by bromocriptine was significantly potentiated by the coadministration of a low dose but not by a high dose of LEK-8829. The potentiation of turning was blocked either by SCH-23390 or by haloperidol. The potentiation of ipsilateral turning suggests the costimulation of D2 and D1 receptors by bromocriptine and LEK-8829, respectively, whereas the lack of potentiation by the highest dose of LEK-8829 may be explained by the opposing activity of LEK-8829 and bromocriptine at D2 receptors. We propose that the D2 and 5HT2 receptor-blocking and D1 receptor-stimulating profile of LEK-8829 is promising for the treatment of negative symptoms of schizophrenia.  (+info)

3D angiography. Clinical interest. First applications in interventional neuroradiology. (2/2795)

3D angiography is a true technical revolution that allows improvement in the quality and safety of diagnostic and endovascular treatment procedures. 3D angiography images are obtained by reconstruction of a rotational angiography acquisition done on a C-arm (GE Medical Systems) spinning at 40 degrees per second. The carotid or vertebral selective injection of a total of 15 ml of non-ionic contrast media at 3 ml/sec over 5 seconds allows the selection of the "arterial phase". Four hundred sixty 3D angiographic studies were performed from December 1996 to September 1998 on 260 patients and have been analyzed in MIP (Maximum Intensity Projection) and SSD (Shaded Surface Display) views. The exploration of intracranial aneurysms is simplified and only requires, for each vascular axis, a biplane PA and Lateral run followed by a single rotational angiography run. The 3D angiography image is available on the workstation's screen (Advantage Workstation 3.1, GE Medical Systems) in less than 10 minutes after the acquisition of the rotational run. It therefore allows one to analyze, during the intervention, the aneurysm's angioarchitecture, in particular the neck, and select the best therapeutic technique. When endovascular treatment is the best indication, 3D angiography allows one to define the optimal angle of view and accurately select the microcoils dimensions. 3D angiography replaces the multiple oblique views that used to be required to analyze the complex aneurysms and therefore allows a reduction of the total contrast medium quantity, the patient X-ray dose and the length of the intervention time which is a safety factor. Also, in particular for complex cases, it brings additional elements complementing the results of standard 2D DSA and rotational angiograms. In the cervical vascular pathology, 3D angiography allows for a better assessment of the stenosis level and of dissection lesions. Our current research activities focus on the matching without stereotactic frame between 3D X-ray angiography and volumetric MR acquisition, which should allow us to improve the treatment of intracerebral arterio-venous malformations (AVMs).  (+info)

Recovery of the vestibulocolic reflex after aminoglycoside ototoxicity in domestic chickens. (3/2795)

Avian auditory and vestibular hair cells regenerate after damage by ototoxic drugs, but until recently there was little evidence that regenerated vestibular hair cells function normally. In an earlier study we showed that the vestibuloocular reflex (VOR) is eliminated with aminoglycoside antibiotic treatment and recovers as hair cells regenerate. The VOR, which stabilizes the eye in the head, is an open-loop system that is thought to depend largely on regularly firing afferents. Recovery of the VOR is highly correlated with the regeneration of type I hair cells. In contrast, the vestibulocolic reflex (VCR), which stabilizes the head in space, is a closed-loop, negative-feedback system that seems to depend more on irregularly firing afferent input and is thought to be subserved by different circuitry than the VOR. We examined whether this different reflex also of vestibular origin would show similar recovery after hair cell regeneration. Lesions of the vestibular hair cells of 10-day-old chicks were created by a 5-day course of streptomycin sulfate. One day after completion of streptomycin treatment there was no measurable VCR gain, and total hair cell density was approximately 35% of that in untreated, age-matched controls. At 2 wk postlesion there was significant recovery of the VCR; at this time two subjects showed VCR gains within the range of control chicks. At 3 wk postlesion all subjects showed VCR gains and phase shifts within the normal range. These data show that the VCR recovers before the VOR. Unlike VOR gain, recovering VCR gain correlates equally well with the density of regenerating type I and type II vestibular hair cells, except at high frequencies. Several factors other than hair cell regeneration, such as length of stereocilia, reafferentation of hair cells, and compensation involving central neural pathways, may be involved in behavioral recovery. Our data suggest that one or more of these factors differentially affect the recovery of these two vestibular reflexes.  (+info)

Projections and firing properties of down eye-movement neurons in the interstitial nucleus of Cajal in the cat. (4/2795)

To clarify the role of the interstitial nucleus of Cajal (INC) in the control of vertical eye movements, projections of burst-tonic and tonic neurons in and around the INC were studied. This paper describes neurons with downward ON directions. We examined, by antidromic activation, whether these down INC (d-INC) neurons contribute to two pathways: a commissural pathway to the contralateral (c-) INC and a descending pathway to the ipsilateral vestibular nucleus (i-VN). Stimulation of the two pathways showed that as many as 74% of neurons were activated antidromically from one of the pathways. Of 113 d-INC neurons tested, 44 were activated from the commissural pathway and 40 from the descending pathway. No neurons were activated from both pathways. We concluded that commissural and descending pathways from the INC originate from two separate groups of neurons. Tracking of antidromic microstimulation in the two nuclei revealed multiple low-threshold sites and varied latencies; this was interpreted as a sign of existence of axonal arborization. Neurons with commissural projections tended to be located more dorsally than those with descending projections. Neurons with descending projections had significantly greater eye-position sensitivity and smaller saccadic sensitivity than neurons with commissural projections. The two groups of INC neurons increased their firing rate in nose-up head rotations and responded best to the rotation in the plane of contralateral posterior/ipsilateral anterior canal pair. Neurons with commissural projections showed a larger phase lag of response to sinusoidal rotation (54.6 +/- 7.6 degrees ) than neurons with descending projections (45.0 +/- 5.5 degrees ). Most neurons with descending projections received disynaptic excitation from the contralateral vestibular nerve. Neurons with commissural projections rarely received such disynaptic input. We suggest that downward-position-vestibular (DPV) neurons in the VN and VN-projecting d-INC neurons form a loop, together with possible commissural loops linking the bilateral VNs and the bilateral INCs. By comparing the quantitative measures of d-INC neurons with those of DPV neurons, we further suggest that integration of head velocity signals proceeds from DPV neurons to d-INC neurons with descending projections and then to d-INC neurons with commissural projections, whereas saccadic velocity signals are processed in the reverse order.  (+info)

Modified Bankart procedure for recurrent anterior dislocation and subluxation of the shoulder in athletes. (5/2795)

Thirty-four athletes (34 shoulders) with recurrent anterior glenohumeral instability were treated with a modified Bankart procedure, using a T-shaped capsular incision in the anterior capsule. The inferior flap was advanced medially and/or superiorly and rigidly fixed at the point of the Bankart lesion by a small cancellous screw and a spike-washer. The superior flap was advanced inferiority and sutured over the inferior flap. Twenty-five athletes (median age: 22) were evaluated over a mean period of follow-up of 65 months. The clinical results were graded, according to Rowe, as 22 (88%) excellent, 3 (12%) good, and none as fair or poor. The mean postoperative range of movement was 92 degrees of external rotation in 90 degrees of abduction. Elevation and internal rotation was symmetrical with the opposite side. Twenty-four patients returned to active sport, 22 at their previous level. This modified Bankart procedure is an effective treatment for athletes with recurrent anterior glenohumeral instability.  (+info)

Transport of colloidal particles in lymphatics and vasculature after subcutaneous injection. (6/2795)

This study was designed to determine the transport of subcutaneously injected viral-size colloid particles into the lymph and the vascular system in the hind leg of the dog. Transport of two colloid particles, with average size approximately 1 and 0.41 microm, respectively, and with and without leg rotation, was tested. Leg rotation serves to enhance the lymph flow rates. The right femoral vein, lymph vessel, and left femoral artery were cannulated while the animal was under anesthesia, and samples were collected at regular intervals after subcutaneous injection of the particles at the right knee level. The number of particles in the samples were counted under fluorescence microscopy by using a hemocytometer. With and without leg rotation, both particle sets were rapidly taken up into the venous blood and into the lymph fluid. The number of particles carried away from the injection site within the first 5 min was <5% of the injected pool. Particles were also seen in arterial blood samples; this suggests reflow and a prolonged residence time in the blood. These results show that particles the size of viruses are rapidly taken up into the lymphatics and blood vessels after subcutaneous deposition.  (+info)

Hip moments during level walking, stair climbing, and exercise in individuals aged 55 years or older. (7/2795)

BACKGROUND AND PURPOSE: Low bone mass of the proximal femur is a risk factor for hip fractures. Exercise has been shown to reduce bone loss in older individuals; however, the exercises most likely to influence bone mass of the proximal femur have not been identified. Net moments of force at the hip provide an indication of the mechanical load on the proximal femur. The purpose of this study was to examine various exercises to determine which exercises result in the greatest magnitude and rate of change in moments of force at the hip in older individuals. SUBJECTS AND METHODS: Walking and exercise patterns were analyzed for 30 subjects (17 men, 13 women) who were 55 years of age or older (X = 65.4, SD = 6.02, range = 55-75) and who had no identified musculoskeletal or neurological impairment. Kinematic and kinetic data were obtained with an optoelectronic system and a force platform. Results. Of the exercises investigated, only ascending stairs generated peak moments higher than those obtained during level walking and only in the transverse plane. Most of the exercises generated moments and rate of change in moments with magnitudes similar to or lower than those obtained during gait. CONCLUSION AND DISCUSSION: Level walking and exercises that generated moments with magnitudes comparable to or higher than those obtained during gait could be combined in an exercise program designed to maintain or increase bone mass at the hip.  (+info)

Orientation-tuned spatial filters for texture-defined form. (8/2795)

Detection threshold for an orientation-texture-defined (OTD) test grating was elevated after adapting to an OTD grating of high orientation contrast. Threshold elevation was greatest for a test grating parallel to the adapting grating, and fell to zero for a test grating perpendicular to the adapting grating. We conclude that the human visual system contains an orientation-tuned neural mechanism sensitive to OTD form, and propose a model for this mechanism. We further propose that orientation discrimination for OTD bars and gratings is determined by the relative activity of these filters for OTD form.  (+info)