Ral-specific guanine nucleotide exchange factor activity opposes other Ras effectors in PC12 cells by inhibiting neurite outgrowth. (1/2494)

Ras proteins can activate at least three classes of downstream target proteins: Raf kinases, phosphatidylinositol-3 phosphate (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). In NIH 3T3 cells, activated Ral-GEFs contribute to Ras-induced cell proliferation and oncogenic transformation by complementing the activities of Raf and PI3 kinases. In PC12 cells, activated Raf and PI3 kinases mediate Ras-induced cell cycle arrest and differentiation into a neuronal phenotype. Here, we show that in PC12 cells, Ral-GEF activity acts opposite to other Ras effectors. Elevation of Ral-GEF activity induced by transfection of a mutant Ras protein that preferentially activates Ral-GEFs, or by transfection of the catalytic domain of the Ral-GEF Rgr, suppressed cell cycle arrest and neurite outgrowth induced by nerve growth factor (NGF) treatment. In addition, Rgr reduced neurite outgrowth induced by a mutant Ras protein that preferentially activates Raf kinases. Furthermore, inhibition of Ral-GEF activity by expression of a dominant negative Ral mutant accelerated cell cycle arrest and enhanced neurite outgrowth in response to NGF treatment. Ral-GEF activity may function, at least in part, through inhibition of the Rho family GTPases, CDC42 and Rac. In contrast to Ras, which was activated for hours by NGF treatment, Ral was activated for only approximately 20 min. These findings suggest that one function of Ral-GEF signaling induced by NGF is to delay the onset of cell cycle arrest and neurite outgrowth induced by other Ras effectors. They also demonstrate that Ras has the potential to promote both antidifferentiation and prodifferentiation signaling pathways through activation of distinct effector proteins. Thus, in some cell types the ratio of activities among Ras effectors and their temporal regulation may be important determinants for cell fate decisions between proliferation and differentiation.  (+info)

Rhophilin, a small GTPase Rho-binding protein, is abundantly expressed in the mouse testis and localized in the principal piece of the sperm tail. (2/2494)

Tissue distribution and cellular localization of rhophilin, a 71 kDa Rho-binding protein, were examined in mice. Rhophilin mRNA was highly expressed in adult testis, but was absent in the testis of W/WV mice deficient in germ cells. An anti-rhophilin antibody detected a band of an expected size in sperm extracts, which was enriched in the tail fraction. Immunofluorescence analysis revealed two lines of striated staining running in parallel in the principal piece of the sperm tail. These results suggest that rhophilin is expressed in germ cells and localized in the fibrous sheath of the sperm tail.  (+info)

GTPase deficient mutant of G(alpha13) regulates the expression of Egr-1 through the small GTPase Rho. (3/2494)

The alpha-subunit of the heterotrimeric G protein G13 regulate cell growth, differentiation and apoptosis in different cell types. Expression of the constitutively activated mutant of G(alpha)13 (G(alpha13)QL) increases the expression of Egr-1, an immediate-early response gene that is identified to be involved in cell growth, differentiation, and apoptosis. Here we report that G(alpha13)QL activates the promoter of Egr-1 through specific sequence which includes the characteristic CArG boxes. We also demonstrate that the G(alpha13)QL activation of Egr-1 promoter is mediated by the Ras-like small GTPase Rho.  (+info)

Sla1p is a functionally modular component of the yeast cortical actin cytoskeleton required for correct localization of both Rho1p-GTPase and Sla2p, a protein with talin homology. (4/2494)

SLA1 was identified previously in budding yeast in a genetic screen for mutations that caused a requirement for the actin-binding protein Abp1p and was shown to be required for normal cortical actin patch structure and organization. Here, we show that Sla1p, like Abp1p, localizes to cortical actin patches. Furthermore, Sla1p is required for the correct localization of Sla2p, an actin-binding protein with homology to talin implicated in endocytosis, and the Rho1p-GTPase, which is associated with the cell wall biosynthesis enzyme beta-1,3-glucan synthase. Mislocalization of Rho1p in sla1 null cells is consistent with our observation that these cells possess aberrantly thick cell walls. Expression of mutant forms of Sla1p in which specific domains were deleted showed that the phenotypes associated with the full deletion are functionally separable. In particular, a region of Sla1p encompassing the third SH3 domain is important for growth at high temperatures, for the organization of cortical actin patches, and for nucleated actin assembly in a permeabilized yeast cell assay. The apparent redundancy between Sla1p and Abp1p resides in the C-terminal repeat region of Sla1p. A homologue of SLA1 was identified in Schizosaccharomyces pombe. Despite relatively low overall sequence homology, this gene was able to rescue the temperature sensitivity associated with a deletion of SLA1 in Saccharomyces cerevisiae.  (+info)

The Rho-related protein Rnd1 inhibits Ca2+ sensitization of rat smooth muscle. (5/2494)

1. The small GTP-binding Rho proteins are involved in the agonist-induced Ca2+ sensitization of smooth muscle. The action and the expression of Rnd1, a new member of the Rho protein family constitutively bound to GTP, has been studied in rat smooth muscle. 2. Recombinant prenylated Rnd1 (0.01-0.1 mg ml-1) dose dependently inhibited carbachol- and GTPgammaS-induced Ca2+ sensitization in beta-escin-permeabilized ileal smooth muscle strips but had no effect on the tension at submaximal [Ca2+] (pCa 6.3). Rnd1 inhibited GTPgammaS-induced tension without shifting the dose-response curves to GTPgammaS. 3. pCa-tension relationships were not modified by Rnd1 and the rise in tension induced through the inhibition of myosin light chain phosphatase by calyculin A was not affected by Rnd1. 4. The Ca2+ sensitization induced by recombinant RhoA was completely abolished when RhoA and Rnd1 were applied together. 5. Rnd1 was expressed at a low level in membrane fractions prepared from intestinal or arterial smooth muscles. The expression of Rnd1 was strongly increased in ileal and aortic smooth muscle from rats treated with progesterone or oestrogen. Progesterone-treated ileal muscle strips showed a decrease in agonist-induced Ca2+ sensitization. 6. The present study shows that (i) Rnd1 inhibits agonist- and GTPgammaS-induced Ca2+ sensitization of smooth muscle by specifically interfering with a RhoA-dependent mechanism and (ii) an increase in Rnd1 expression may account, at least in part, for the steroid-induced decrease in agonist-induced Ca2+ sensitization.  (+info)

Bacterial toxins and the Rho GTP-binding protein: what microbes teach us about cell regulation. (6/2494)

In the present review activities of two bacterial toxins, Clostridium botulinum exoenzyme C3 and Escherichia coli CNF1, both acting on the GTP-binding protein Rho are analyzed. Proteins belonging to the Rho family regulate the actin cytoskeleton and act as molecular switches in a number of signal transduction pathways. C3 and CNF1 have opposite effects on Rho thus representing useful tools for studies on cell division, cell differentiation and apoptosis.  (+info)

Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. (7/2494)

The Rho3 protein plays a critical role in the budding yeast Saccharomyces cerevisiae by directing proper cell growth. Rho3 appears to influence cell growth by regulating polarized secretion and the actin cytoskeleton, since rho3 mutants exhibit large rounded cells with an aberrant actin cytoskeleton. To gain insights into how Rho3 influences these events, we have carried out a yeast two-hybrid screen using an S. cerevisiae cDNA library to identify proteins interacting with Rho3. Two proteins, Exo70 and Myo2, were identified in this screen. Interactions with these two proteins are greatly reduced or abolished when mutations are introduced into the Rho3 effector domain. In addition, a type of mutation known to produce dominant negative mutants of Rho proteins abolished the interaction with both of these proteins. In contrast, Rho3 did not interact with protein kinase C (Pkc1), an effector of another Rho family protein, Rho1, nor did Rho1 interact with Exo70 or Myo2. Rho3 did interact with Bni1, another effector of Rho1, but less efficiently than with Rho1. The interaction between Rho3 and Exo70 and between Rho3 and Myo2 was also demonstrated with purified proteins. The interaction between Exo70 and Rho3 in vitro was dependent on the presence of GTP, since Rho3 complexed with guanosine 5'-O-(3-thiotriphosphate) interacted more efficiently with Exo70 than Rho3 complexed with guanosine 5'-O-(3-thiodiphosphate). Overlapping subcellular localization of the Rho3 and Exo70 proteins was demonstrated by indirect immunofluorescence. In addition, patterns of localization of both Exo70 and Rho3 were altered when a dominant active allele of RHO3, RHO3(E129,A131), which causes a morphological abnormality, was expressed. These results provide a direct molecular basis for the action of Rho3 on exocytosis and the actin cytoskeleton.  (+info)

Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress. (8/2494)

Shear stress, the tangential component of hemodynamic forces, plays an important role in endothelial remodeling. In this study, we investigated the role of Rho family GTPases Cdc42 and Rho in shear stress-induced signal transduction and cytoskeleton reorganization. Our results showed that shear stress induced the translocation of Cdc42 and Rho from cytosol to membrane. Although both Cdc42 and Rho were involved in the shear stress-induced transcription factor AP-1 acting on the 12-O-tetradecanoyl-13-phorbol-acetate-responsive element (TRE), only Cdc42 was sufficient to activate AP-1/TRE. Dominant-negative mutants of Cdc42 and Rho, as well as recombinant C3 exoenzyme, attenuated the shear stress activation of c-Jun NH2-terminal kinases (JNKs), suggesting that Cdc42 and Rho regulate the shear stress induction of AP-1/TRE activity through JNKs. Shear stress-induced cell alignment and stress fiber formation were inhibited by the dominant-negative mutants of Rho and p160ROCK, but not by the dominant-negative mutant of Cdc42, indicating that the Rho-p160ROCK pathway regulates the cytoskeletal reorganization in response to shear stress.  (+info)