Lowe's syndrome: identification of carriers by lens examination. (1/53)

Lens examinations were performed on 7 obligate and 7 possible carriers of the X-linked gene for Lowe's syndrome, and on 117 controls. By quantitatively grading punctate cortical opacities, it was possible to discriminate between the obligate carriers and the controls with a fair degree of confidence. In the age group most important for genetic counselling, that of child bearing, the data are too limited for the derivation of precise estimates, but may, nevertheless, be useful. More such data are needed.  (+info)

Magnesium transport in the renal distal convoluted tubule. (2/53)

The distal tubule reabsorbs approximately 10% of the filtered Mg(2+), but this is 70-80% of that delivered from the loop of Henle. Because there is little Mg(2+) reabsorption beyond the distal tubule, this segment plays an important role in determining the final urinary excretion. The distal convoluted segment (DCT) is characterized by a negative luminal voltage and high intercellular resistance so that Mg(2+) reabsorption is transcellular and active. This review discusses recent evidence for selective and sensitive control of Mg(2+) transport in the DCT and emphasizes the importance of this control in normal and abnormal renal Mg(2+) conservation. Normally, Mg(2+) absorption is load dependent in the distal tubule, whether delivery is altered by increasing luminal Mg(2+) concentration or increasing the flow rate into the DCT. With the use of microfluorescent studies with an established mouse distal convoluted tubule (MDCT) cell line, it was shown that Mg(2+) uptake was concentration and voltage dependent. Peptide hormones such as parathyroid hormone, calcitonin, glucagon, and arginine vasopressin enhance Mg(2+) absorption in the distal tubule and stimulate Mg(2+) uptake into MDCT cells. Prostaglandin E(2) and isoproterenol increase Mg(2+) entry into MDCT cells. The current evidence indicates that cAMP-dependent protein kinase A, phospholipase C, and protein kinase C signaling pathways are involved in these responses. Steroid hormones have significant effects on distal Mg(2+) transport. Aldosterone does not alter basal Mg(2+) uptake but potentiates hormone-stimulated Mg(2+) entry in MDCT cells by increasing hormone-mediated cAMP formation. 1,25-Dihydroxyvitamin D(3), on the other hand, stimulates basal Mg(2+) uptake. Elevation of plasma Mg(2+) or Ca(2+) inhibits hormone-stimulated cAMP accumulation and Mg(2+) uptake in MDCT cells through activation of extracellular Ca(2+)/Mg(2+)-sensing mechanisms. Mg(2+) restriction selectively increases Mg(2+) uptake with no effect on Ca(2+) absorption. This intrinsic cellular adaptation provides the sensitive and selective control of distal Mg(2+) transport. The distally acting diuretics amiloride and chlorothiazide stimulate Mg(2+) uptake in MDCT cells acting through changes in membrane voltage. A number of familial and acquired disorders have been described that emphasize the diversity of cellular controls affecting renal Mg(2+) balance. Although it is clear that many influences affect Mg(2+) transport within the DCT, the transport processes have not been identified.  (+info)

Localization of the membrane defect in transepithelial transport of taurine by parallel studies in vivo and in vitro in hypertaurinuric mice. (3/53)

We investigated the mechanism of taurinuria in three inbred strains of mice: A/J, a normal taurine excretor (taut+); and two hypertaurinuric (taut-) strains, C57BL/6J and PRO/Re. Plasma taurine is comparable in the three strains (approximately 0.5 mM), but taurinuria is 10-fold greater in taut- animals. Fractional reabsorption of taurine is 0.967 +/- 0.013 (mean +/- SD) in A/J); and 0.839 +/- 0.08 and 0.787 +/- 0.05 in C57BL/6J and PRO/Re, respectively. Taurine concentration in renal cortex intracellular fluid (free of urine contamination) is similar in the three strains. Taurine reabsorption is inhibited by beta-alanine, in taut+ and taut- strains. These in vivo findings reveal residual taurine transport activity in the taut- phenotype and no evidence for impaired efflux at basilar membranes as the cause of impaired taurine reabsorption. Cortex slices provide information about uptake of amino acids at the antiluminal membrane. Taurine behaves as an inert metabolite in mouse kidney cortex slices. Taurine uptake by slices is active and, at less than 1 mM, is greater than normal in taut- slices. Concentration-dependent uptake studies reveal more than one taurine carrier in taut+ and taut- strains. The apparent Km values for uptake below 1 mM are different in taut- and taut+ slices (approximately 0.2 mM and approximately 0.7 mM, respectively); the apparent Km values above 1 mM taurine are similar in taut+ and taut- slices. Efflux from slices in all strains in the same (0.0105-0.0113 mumol-min-1-g-1 wet wt), but taut- tissue retains about 10% more radioactivity over the period of efflux. beta-Alanine is actively metabolized in mouse kidney. Its uptake in the presence of blocked transamination, is greater; its intracellular oxidation is attenuated; and its exchange with intracellular taurine is diminished in taut- slices. These findings indicate impaired beta-amino acid permeation on a low-Km uptake system at the luminal membrane in the taut- phenotype. beta-Amino acids are not reclaimed efficiently either from the innermost luminal pool in cortex slices or from the ultrafiltrate in the tubule lumen in vivo. The former leads to high uptake ratios in vitro, the latter to high clearance rates in vivo. In vitro and in vivo data are thus concordant. This is the first time that a hereditary defect in amino acid transport has been assigned to a specific membrane surface in mammalian kidney.  (+info)

Dent Disease with mutations in OCRL1. (4/53)

Dent disease is an X-linked renal proximal tubulopathy associated with mutations in the chloride channel gene CLCN5. Lowe syndrome, a multisystem disease characterized by renal tubulopathy, congenital cataracts, and mental retardation, is associated with mutations in the gene OCRL1, which encodes a phosphatidylinositol 4,5-bisphosphate (PIP(2)) 5-phosphatase. Genetic heterogeneity has been suspected in Dent disease, but no other gene for Dent disease has been reported. We studied male probands in 13 families, all of whom met strict criteria for Dent disease but lacked mutations in CLCN5. Linkage analysis in the one large family localized the gene to a candidate region at Xq25-Xq27.1. Sequencing of candidate genes revealed a mutation in the OCRL1 gene. Of the 13 families studied, OCRL1 mutations were found in 5. PIP(2) 5-phosphatase activity was markedly reduced in skin fibroblasts cultured from the probands of these five families, and protein expression, measured by western blotting, was reduced or absent. Slit-lamp examinations performed in childhood or adulthood for all five probands showed normal results. Unlike patients with typical Lowe syndrome, none of these patients had metabolic acidosis. Three of the five probands had mild mental retardation, whereas two had no developmental delay or behavioral disturbance. These findings demonstrate that mutations in OCRL1 can occur with the isolated renal phenotype of Dent disease in patients lacking the cataracts, renal tubular acidosis, and neurological abnormalities that are characteristic of Lowe syndrome. This observation confirms genetic heterogeneity in Dent disease and demonstrates more-extensive phenotypic heterogeneity in Lowe syndrome than was previously appreciated. It establishes that the diagnostic criteria for disorders resulting from mutations in the Lowe syndrome gene OCRL1 need to be revised.  (+info)

Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. (5/53)

Thiazide diuretics enhance renal Na+ excretion by blocking the Na+-Cl- cotransporter (NCC), and mutations in NCC result in Gitelman syndrome. The mechanisms underlying the accompanying hypocalciuria and hypomagnesemia remain debated. Here, we show that enhanced passive Ca2+ transport in the proximal tubule rather than active Ca2+ transport in distal convolution explains thiazide-induced hypocalciuria. First, micropuncture experiments in mice demonstrated increased reabsorption of Na+ and Ca2+ in the proximal tubule during chronic hydrochlorothiazide (HCTZ) treatment, whereas Ca2+ reabsorption in distal convolution appeared unaffected. Second, HCTZ administration still induced hypocalciuria in transient receptor potential channel subfamily V, member 5-knockout (Trpv5-knockout) mice, in which active distal Ca2+ reabsorption is abolished due to inactivation of the epithelial Ca2+ channel Trpv5. Third, HCTZ upregulated the Na+/H+ exchanger, responsible for the majority of Na+ and, consequently, Ca2+ reabsorption in the proximal tubule, while the expression of proteins involved in active Ca2+ transport was unaltered. Fourth, experiments addressing the time-dependent effect of a single dose of HCTZ showed that the development of hypocalciuria parallels a compensatory increase in Na+ reabsorption secondary to an initial natriuresis. Hypomagnesemia developed during chronic HCTZ administration and in NCC-knockout mice, an animal model of Gitelman syndrome, accompanied by downregulation of the epithelial Mg2+ channel transient receptor potential channel subfamily M, member 6 (Trpm6). Thus, Trpm6 downregulation may represent a general mechanism involved in the pathogenesis of hypomagnesemia accompanying NCC inhibition or inactivation.  (+info)

When EGF is offside, magnesium is wasted. (6/53)

Our understanding of magnesium (Mg(2+)) regulation has recently been catapulted forward by the discovery of several disease loci for monogenic disorders of Mg(2+) homeostasis. In this issue of the JCI, Groenestege et al. report that their study of a rare inherited Mg(2+) wasting disorder in consanguineous kindred shows that EGF acts as an autocrine/paracrine magnesiotropic hormone (see the related article beginning on page 2260). EGF stimulates Mg(2+) reabsorption in the renal distal convoluted tubule (DCT) via engagement of its receptor on the basolateral membrane of DCT cells and activation of the Mg(2+) channel TRPM6 (transient receptor potential cation channel, subfamily M, member 6) in the apical membrane. These authors show that a point mutation in pro-EGF retains EGF secretion to the apical but not the basolateral membrane, disrupting this cascade and causing renal Mg(2+) wasting. This work is another seminal example of the power of the study of monogenic disorders in the quest to understand human physiology.  (+info)

Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. (7/53)

Primary hypomagnesemia constitutes a rare heterogeneous group of disorders characterized by renal or intestinal magnesium (Mg(2+)) wasting resulting in generally shared symptoms of Mg(2+) depletion, such as tetany and generalized convulsions, and often including associated disturbances in calcium excretion. However, most of the genes involved in the physiology of Mg(2+) handling are unknown. Through the discovery of a mutation in the EGF gene in isolated autosomal recessive renal hypomagnesemia, we have, for what we believe is the first time, identified a magnesiotropic hormone crucial for total body Mg(2+) balance. The mutation leads to impaired basolateral sorting of pro-EGF. As a consequence, the renal EGFR is inadequately stimulated, resulting in insufficient activation of the epithelial Mg(2+) channel TRPM6 (transient receptor potential cation channel, subfamily M, member 6) and thereby Mg(2+) loss. Furthermore, we show that colorectal cancer patients treated with cetuximab, an antagonist of the EGFR, develop hypomagnesemia, emphasizing the significance of EGF in maintaining Mg(2+) balance.  (+info)

Human FXYD2 G41R mutation responsible for renal hypomagnesemia behaves as an inward-rectifying cation channel. (8/53)

 (+info)