RNAi-mediated PTB depletion leads to enhanced exon definition. (1/501)

Mutually exclusive use of exons IIIb or IIIc in FGF-R2 transcripts requires the silencing of exon IIIb. This repression is mediated by silencer elements upstream and downstream of the exon. Both silencers bind the polypyrimidine tract binding protein (PTB) and PTB binding sites within these elements are required for efficient silencing of exon IIIb. Recruitment of MS2-PTB fusion proteins upstream or downstream of exon IIIb causes repression of this exon. Depletion of endogenous PTB using RNAi increases exon IIIb inclusion in transcripts derived from minigenes and from the endogenous FGF-R2 gene. These data demonstrate that PTB is a negative regulator of exon definition in vivo.  (+info)

Discovery of RNA structural elements using evolutionary computation. (2/501)

RNA molecules fold into characteristic secondary and tertiary structures that account for their diverse functional activities. Many of these RNA structures, or certain structural motifs within them, are thought to recur in multiple genes within a single organism or across the same gene in several organisms and provide a common regulatory mechanism. Search algorithms, such as RNAMotif, can be used to mine nucleotide sequence databases for these repeating motifs. RNAMotif allows users to capture essential features of known structures in detailed descriptors and can be used to identify, with high specificity, other similar motifs within the nucleotide database. However, when the descriptor constraints are relaxed to provide more flexibility, or when there is very little a priori information about hypothesized RNA structures, the number of motif 'hits' may become very large. Exhaustive methods to search for similar RNA structures over these large search spaces are likely to be computationally intractable. Here we describe a powerful new algorithm based on evolutionary computation to solve this problem. A series of experiments using ferritin IRE and SRP RNA stem-loop motifs were used to verify the method. We demonstrate that even when searching extremely large search spaces, of the order of 10(23) potential solutions, we could find the correct solution in a fraction of the time it would have taken for exhaustive comparisons.  (+info)

Sam68 enhances the cytoplasmic utilization of intron-containing RNA and is functionally regulated by the nuclear kinase Sik/BRK. (3/501)

Cells normally restrict the nuclear export and expression of intron-containing mRNA. In many cell lines, this restriction can be overcome by inclusion of cis-acting elements, such as the Mason-Pfizer monkey virus constitutive transport element (CTE), in the RNA. In contrast, we observed that CTE-mediated expression from human immunodeficiency virus Gag-Pol reporters was very inefficient in 293 and 293T cells. However, addition of Sam68 led to a dramatic increase in the amount of Gag-Pol proteins produced in these cells. Enhancement of CTE function was not seen when a Sam68 point mutant (G178E) that is defective for RNA binding was used. Additionally, the effect of Sam68 was inhibited in a dose-dependent manner by coexpression of an activated form of the nuclear kinase Sik/BRK that hyperphosphorylated Sam68. RNA analysis showed that cytoplasmic Gag-Pol-CTE RNA levels were only slightly enhanced by the addition of Sam68, compared to a 60- to 70-fold increase in the levels of Gag-Pol protein expression. Thus, in this system, Sam68 functioned to enhance the cytoplasmic utilization of RNA containing the CTE. These results suggest that Sam68 may interact with specific RNAs in the nucleus to provide a "mark" that affects their cytoplasmic fate. They also provide further evidence of links between signal transduction and RNA utilization.  (+info)

The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. (4/501)

The X-chromosome-linked inhibitor of apoptosis, XIAP, is the most powerful and ubiquitous intrinsic inhibitor of apoptosis. We have shown previously that the translation of XIAP is controlled by a potent internal ribosome entry site (IRES) element. IRES-mediated translation of XIAP is increased in response to cellular stress, suggesting the critical role for IRES translation during cellular stress. Here, we demonstrate that heterogeneous nuclear ribonucleoproteins C1 and C2 (hnRNPC1 and -C2) are part of the RNP complex that forms on XIAP IRES. Furthermore, the cellular levels of hnRNPC1 and -C2 parallel the activity of XIAP IRES and the overexpression of hnRNPC1 and -C2 specifically enhanced translation of XIAP IRES, suggesting that hnRNPC1 and -C2 may modulate XIAP expression. Given the central role of XIAP in the regulation of apoptosis these results are important for our understanding of the control of apoptosis.  (+info)

The influence of viral coding sequences on pestivirus IRES activity reveals further parallels with translation initiation in prokaryotes. (5/501)

Classical swine fever virus (CSFV) is a member of the pestivirus family, which shares many features in common with hepatitis C virus (HCV). It is shown here that CSFV has an exceptionally efficient cis-acting internal ribosome entry segment (IRES), which, like that of HCV, is strongly influenced by the sequences immediately downstream of the initiation codon, and is optimal with viral coding sequences in this position. Constructs that retained 17 or more codons of viral coding sequence exhibited full IRES activity, but with only 12 codons, activity was approximately 66% of maximum in vitro (though close to maximum in transfected BHK cells), whereas with just 3 codons or fewer, the activity was only approximately 15% of maximum. The minimal coding region elements required for high activity were exchanged between HCV and CSFV. Although maximum activity was observed in each case with the homologous combination of coding region and 5' UTR, the heterologous combinations were sufficiently active to rule out a highly specific functional interplay between the 5' UTR and coding sequences. On the other hand, inversion of the coding sequences resulted in low IRES activity, particularly with the HCV coding sequences. RNA structure probing showed that the efficiency of internal initiation of these chimeric constructs correlated most closely with the degree of single-strandedness of the region around and immediately downstream of the initiation codon. The low activity IRESs could not be rescued by addition of supplementary eIF4A (the initiation factor with ATP-dependent RNA helicase activity). The extreme sensitivity to secondary structure around the initiation codon is likely to be due to the fact that the eIF4F complex (which has eIF4A as one of its subunits) is not required for and does not participate in initiation on these IRESs.  (+info)

IRESdb: the Internal Ribosome Entry Site database. (6/501)

Internal Ribosome Entry Sites (IRES) are cis-acting RNA sequences able to mediate internal entry of the 40S ribosomal subunit on some eukaryotic and viral messenger RNAs upstream of a translation initiation codon. These sequences are very diverse and are present in a growing list of mRNAs. Novel IRES sequences continue to be added to public databases every year and the list of unknown IRESes is certainly still very large. The IRES database is a comprehensive WWW resource for internal ribosome entry sites and presents currently available general information as well as detailed data for each IRES. It is a searchable, periodically updated collection of IRES RNA sequences. Sequences are presented in FASTA form and hotlinked to NCBI GenBank files. Several subsets of data are classified according to the viral taxon (for viral IRESes), to the gene product function (for cellular IRESes), to the possible cellular regulation or to the trans-acting factor that mediates IRES function. This database is accessible at http://ifr31w3.toulouse.inserm.fr/IRESdatabase/.  (+info)

Noncoding regulatory RNAs database. (7/501)

The noncoding RNAs database is a collection of currently available sequence data on RNAs, which have no protein-coding capacity and have been implicated in regulation of cellular processes. The RNAs included in the database form very heterogenous group of molecules that act on different levels of information transmission in the cell. It includes RNAs acting on the level of chromatin structure, transcriptional and translational regulation of gene expression, modulation of protein function and regulation of subcellular distribution of RNAs and proteins. Those RNAs, with potential regulatory functions have been identified in prokaryotic, animal and plant cells. The database can be accessed at http://biobases.ibch.poznan.pl/ncRNA/.  (+info)

An uncapped RNA suggests a model for Caenorhabditis elegans polycistronic pre-mRNA processing. (8/501)

Polycistronic pre-mRNAs from Caenohabditis elegans operons are processed by internal cleavage and polyadenylation to create 3' ends of mature mRNAs. This is accompanied by trans-splicing with SL2 approximately 100 nucleotides downstream of the 3' end formation sites to create the 5' ends of downstream mRNAs. SL2 trans-splicing depends on a U-rich element (Ur), located approximately 70 nucleotides upstream of the trans-splice site in the intercistronic region (ICR), as well as a functional 3' end formation signal. Here we report the existence of a novel gene-length RNA, the Ur-RNA, starting just upstream of the Ur element. The expression of Ur-RNA is dependent on 3' end formation as well as on the presence of the Ur element, but does not require a trans-splice site. The Ur-RNA is not capped, and alteration of the location of the Ur element in either the 5' or 3' direction alters the location of the 5' end of the Ur-RNA. We propose that a 5' to 3' exonuclease degrades the precursor RNA following cleavage at the poly(A) site, stopping when it reaches the Ur element, presumably attributable to a bound protein. Part of the function of this protein can be performed by the MS2 coat protein. Recruitment of coat protein to the ICR in the absence of the Ur element results in accumulation of an RNA equivalent to Ur-RNA, and restores trans-splicing. Only SL1, however, is used. Therefore, coat protein is sufficient for blocking the exonuclease and thereby allowing formation of a substrate for trans-splicing, but it lacks the ability to recruit the SL2 snRNP. Our results also demonstrate that MS2 coat protein can be used as an in vivo block to an exonuclease, which should have utility in mRNA stability studies.  (+info)