X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture. (73/21611)

Phage T4 endonuclease VII (Endo VII), the first enzyme shown to resolve Holliday junctions, recognizes a broad spectrum of DNA substrates ranging from branched DNAs to single base mismatches. We have determined the crystal structures of the Ca2+-bound wild-type and the inactive N62D mutant enzymes at 2.4 and 2.1 A, respectively. The Endo VII monomers form an elongated, highly intertwined molecular dimer exhibiting extreme domain swapping. The major dimerization elements are two pairs of antiparallel helices forming a novel 'four-helix cross' motif. The unique monomer fold, almost completely lacking beta-sheet structure and containing a zinc ion tetrahedrally coordinated to four cysteines, does not resemble any of the known junction-resolving enzymes, including the Escherichia coli RuvC and lambda integrase-type recombinases. The S-shaped dimer has two 'binding bays' separated by approximately 25 A which are lined by positively charged residues and contain near their base residues known to be essential for activity. These include Asp40 and Asn62, which function as ligands for the bound calcium ions. A pronounced bipolar charge distribution suggests that branched DNA substrates bind to the positively charged face with the scissile phosphates located near the divalent cations. A model for the complex with a four-way DNA junction is presented.  (+info)

The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome. (74/21611)

Ribosomal protein L2 is the largest protein component in the ribosome. It is located at or near the peptidyl transferase center and has been a prime candidate for the peptidyl transferase activity. It binds directly to 23S rRNA and plays a crucial role in its assembly. The three-dimensional structure of the RNA-binding domain of L2 from Bacillus stearothermophilus has been determined at 2.3 A resolution by X-ray crystallography using the selenomethionyl MAD method. The RNA-binding domain of L2 consists of two recurring motifs of approximately 70 residues each. The N-terminal domain (positions 60-130) is homologous to the OB-fold, and the C-terminal domain (positions 131-201) is homologous to the SH3-like barrel. Residues Arg86 and Arg155, which have been identified by mutation experiments to be involved in the 23S rRNA binding, are located at the gate of the interface region between the two domains. The molecular architecture suggests how this important protein has evolved from the ancient nucleic acid-binding proteins to create a 23S rRNA-binding domain in the very remote past.  (+info)

Crystal structure of a heparin- and integrin-binding segment of human fibronectin. (75/21611)

The crystal structure of human fibronectin (FN) type III repeats 12-14 reveals the primary heparin-binding site, a clump of positively charged residues in FN13, and a putative minor site approximately 60 A away in FN14. The IDAPS motif implicated in integrin alpha4beta1 binding is at the FN13-14 junction, rendering the critical Asp184 inaccessible to integrin. Asp184 clamps the BC loop of FN14, whose sequence (PRARI) is reminiscent of the synergy sequence (PHSRN) of FN9. Mutagenesis studies prompted by this observation reveal that both arginines of the PRARI sequence are important for alpha4beta1 binding to FN12-14. The PRARI motif may represent a new class of integrin-binding sites. The spatial organization of the binding sites suggests that heparin and integrin may bind in concert.  (+info)

The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. (76/21611)

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBD) and a regulatory (R) domain. The NBDs and R-domain are cytosolic and how they are assembled with the MSDs to achieve the native CFTR structure is not clear. Human DnaJ 2 (Hdj-2) is a co-chaperone of heat shock cognate 70 (Hsc70) which is localized to the cytosolic face of the ER. Whether Hdj-2 directs Hsc70 to facilitate the assembly of cytosolic regions on CFTR was investigated. We report that immature ER forms of CFTR and DeltaF508 CFTR can be isolated in complexes with Hdj-2 and Hsc70. The DeltaF508 mutation is localized in NBD1 and causes the CFTR to misfold. Levels of complex formation between DeltaF508 CFTR and Hdj-2/Hsp70 were approximately 2-fold higher than those with CFTR. The earliest stage at which Hdj-2/Hsc70 could bind CFTR translation intermediates coincided with the expression of NBD1 in the cytosol. Interestingly, complex formation between Hdj-2 and nascent CFTR was greatly reduced after expression of the R-domain. In experiments with purified components, Hdj-2 and Hsc70 acted synergistically to suppress NBD1 aggregation. Collectively, these data suggest that Hdj-2 and Hsc70 facilitate early steps in CFTR assembly. A putative step in the CFTR folding pathway catalyzed by Hdj-2/Hsc70 is the formation of an intramolecular NBD1-R-domain complex. Whether this step is defective in the biogenesis of DeltaF508 CFTR will be discussed.  (+info)

A trans-acting peptide activates the yeast a1 repressor by raising its DNA-binding affinity. (77/21611)

The cooperative binding of gene regulatory proteins to DNA is a common feature of transcriptional control in both prokaryotes and eukaryotes. It is generally viewed as a simple energy coupling, through protein-protein interactions, of two or more DNA-binding proteins. In this paper, we show that the simple view does not account for the cooperative DNA binding of a1 and alpha2, two homeodomain proteins from budding yeast. Rather, we show through the use of chimeric proteins and synthetic peptides that, upon heterodimerization, alpha2 instructs a1 to bind DNA. This change is induced by contact with a peptide contributed by alpha2, and this contact converts a1 from a weak to a strong DNA-binding protein. This explains, in part, how high DNA-binding specificity is achieved only when the two gene regulatory proteins conjoin. We also provide evidence that features of the a1-alpha2 interaction can serve as a model for other examples of protein-protein interactions, including that between the herpes virus transcriptional activator VP16 and the mammalian homeodomain-containing protein Oct-l.  (+info)

A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. (78/21611)

Appropriate subcellular localization is crucial for regulating p53 function. We show that p53 export is mediated by a highly conserved leucine-rich nuclear export signal (NES) located in its tetramerization domain. Mutation of NES residues prevented p53 export and hampered tetramer formation. Although the p53-binding protein MDM2 has an NES and has been proposed to mediate p53 export, we show that the intrinsic p53 NES is both necessary and sufficient for export. This report also demonstrates that the cytoplasmic localization of p53 in neuroblastoma cells is due to its hyperactive nuclear export: p53 in these cells can be trapped in the nucleus by the export-inhibiting drug leptomycin B or by binding a p53-tetramerization domain peptide that masks the NES. We propose a model in which regulated p53 tetramerization occludes its NES, thereby ensuring nuclear retention of the DNA-binding form. We suggest that attenuation of p53 function involves the conversion of tetramers into monomers or dimers, in which the NES is exposed to the proteins which mediate their export to the cytoplasm.  (+info)

Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice. (79/21611)

NuMA is a nuclear matrix protein in interphase and relocates to the spindle poles in mitotis. Different NuMA constructs, in which either N- or C-terminal domains were deleted, and the full-length construct were expressed in Escherichia coli, and the NuMA polypeptides were purified to homogeneity and allowed to assemble in vitro. Electron microscopy showed that NuMA can build multiarm oligomers by interaction of the C-terminal globular domains. Each arm of the oligomer corresponds to a NuMA dimer. Oligomers with up to 10 or 12 arms have been observed for both full-length NuMA and for constructs that still contain the proximal part of the C-terminal tail domain. Other results from this laboratory have shown that transient overexpression of NuMA in HeLa cells induces a nuclear scaffold with a quasi-hexagonal organization that can fill the nuclei. Here we show that computer modelling of the three-dimensional packing of NuMA into such scaffolds can explain the different spacing of the hexagons seen when constructs with different coiled-coil lengths are used. Thus, the 12 arm oligomer, for which we have in vitro evidence, may be the structural unit from which the nuclear scaffold in transfected cells is built.  (+info)

Structural features and assembly of the soluble overexpressed PsaD subunit of photosystem I. (80/21611)

PsaD is a peripheral protein on the reducing side of photosystem I (PS I). We expressed the psaD gene from the thermophilic cyanobacterium Mastigocladus laminosus in Escherichia coli and obtained a soluble protein with a polyhistidine tag at the carboxyl terminus. The soluble PsaD protein was purified by Ni-affinity chromatography and had a mass of 16716 Da by MALDI-TOF. The N-terminal amino acid sequence of the overexpressed PsaD matched the N-terminal sequence of the native PsaD from M. laminosus. The soluble PsaD could assemble into the PsaD-less PS I. As determined by isothermal titration calorimetry, PsaD bound to PS I with 1.0 binding site per PS I, the binding constant of 7.7x10(6) M-1, and the enthalpy change of -93.6 kJ mol-1. This is the first time that the binding constant and binding heat have been determined in the assembly of any photosynthetic membrane protein. To identify the surface-exposed domains, purified PS I complexes and overexpressed PsaD were treated with N-hydroxysuccinimidobiotin (NHS-biotin) and biotin-maleimide, and the biotinylated residues were mapped. The Cys66, Lys21, Arg118 and Arg119 residues were exposed on the surface of soluble PsaD whereas the Lys129 and Lys131 residues were not exposed on the surface. Consistent with the X-ray crystallographic studies on PS I, circular dichroism spectroscopy revealed that PsaD contains a small proportion of alpha-helical conformation.  (+info)