Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling. (17/1280)

Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [(13)C(2)(18)O(2)]Acetate was incubated with spinach (Spinacia oleracea) leaves and the (18)O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an (18)O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the (18)O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of (18)O or, less likely, complete loss of (18)O, but not a 50% loss of (18)O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of "prokaryotic" and "eukaryotic" lipids have both been confirmed.  (+info)

Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. (18/1280)

Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.  (+info)

Identification, cloning, and properties of cytosolic D-ribulose-5-phosphate 3-epimerase from higher plants. (19/1280)

Plant cells contain a complete oxidative pentose phosphate pathway in the chloroplasts, but an incomplete pathway was proposed to be present in the cytosol, with cytosolic (cyt) isoforms of ribulose-5-phosphate 3-epimerase (RPEase) and other non-oxidative branch enzymes being undetectable. Here we present for the first time the identification, cloning, and properties of a cyt-RPEase in rice (Oryza sativa) and presence of its homologues in other plant species. Recombinant cyt-RPEase is a homodimer of 24.3-kDa subunits such as in the case of the animal and yeast enzymes, whereas the chloroplast (chl) RPEase is a hexamer. Cytosolic and chloroplastic RPEases cannot be separated by anion exchange chromatography. Since plant cyt-RPEase is more closely related in its primary structure to homologous enzymes in animal and yeast cells than to the chloroplast RPEase, the plant nuclear genes coding for cytosolic and chloroplast RPEases were most likely derived from eubacteria and cyanobacteria, respectively. Accumulation of cyt-RPEase-mRNA and protein is high in root cells, lacking chl-RPEase, and lower in green tissue. These and other observations support the view that green and non-green plant cells possess a complete oxidative pentose phosphate pathway in the cytosol.  (+info)

Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. (20/1280)

The use of herbicides to control undesirable vegetation has become a universal practice. For the broad application of herbicides the risk of damage to crop plants has to be limited. We introduced a gene into the genome of tobacco (Nicotiana tabacum) plants encoding the plastid-located protoporphyrinogen oxidase of Arabidopsis, the last enzyme of the common tetrapyrrole biosynthetic pathway, under the control of the cauliflower mosaic virus 35S promoter. The transformants were screened for low protoporphyrin IX accumulation upon treatment with the diphenyl ether-type herbicide acifluorfen. Leaf disc incubation and foliar spraying with acifluorfen indicated the lower susceptibility of the transformants against the herbicide. The resistance to acifluorfen is conferred by overexpression of the plastidic isoform of protoporphyrinogen oxidase. The in vitro activity of this enzyme extracted from plastids of selected transgenic lines was at least five times higher than the control activity. Herbicide treatment that is normally inhibitory to protoporphyrinogen IX oxidase did not significantly impair the catalytic reaction in transgenic plants and, therefore, did not cause photodynamic damage in leaves. Therefore, overproduction of protoporphyrinogen oxidase neutralizes the herbicidal action, prevents the accumulation of the substrate protoporphyrinogen IX, and consequently abolishes the light-dependent phytotoxicity of acifluorfen.  (+info)

Subcellular localization of plastoquinone and ubiquinone synthesis in spinach cells. (21/1280)

In vivo labeling of spinach etiolated leaves with [(3)H]mevalonate followed by rapid cell fractionation procedure showed that ER-Golgi membranes are involved in transport of plastoquinone (PQ) and ubiquinone (UQ) to plastids and mitochondria, respectively. Translocation of these lipids was inhibited by agents which affect protein and lipid intracellular transport causing structural and functional disintegration of the ER-Golgi system (monensin, brefeldin) and interfere with mitochondrial energy conservation (carbonyl cyanide m-chlorophenylhydrazone), but was not affected by colchicine which influences the organization of the cytoskeletal network. Colchicine treatment resulted in marked stimulation of PQ and UQ synthesis. Results of experiments with pre-exposure of etiolated seedlings to light suggest that translocation processes are dependent on the plastid developmental state and their capacity as acceptors of PQ. Thus, the experiments indicate that biosynthesis and transport of PQ and UQ involve multiple cellular compartments and that kinetics of the transport process is dependent on the actual physiological conditions.  (+info)

ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings. (22/1280)

The Arabidopsis ABSCISIC ACID-INSENSITIVE3 (ABI3) protein has been identified previously as a crucial regulator of late seed development. Here, we show that dark-grown abi3 plants, or abi3 plants returned to the dark after germination in the light, developed and maintained an etioplast with a prominent prolamellar body at developmental stages in which the wild type did not. Overexpression of ABI3 led to the preservation of the plastid ultrastructure that was present at the onset of darkness. These observations suggest that ABI3 plays a role in plastid differentiation pathways in vegetative tissues. Furthermore, the analysis of deetiolated (det1) abi3 double mutants revealed that DET1 and ABI3 impinge on a multitude of common processes. During seed maturation, ABI3 required DET1 to achieve its full expression. Mature det1 abi3 seeds were found to be in a highly germinative state, indicating that germination is controlled by both DET1 and ABI3. During plastid differentiation in leaves of dark-grown plants, DET1 is required for the action of ABI3 as it is during seed development. Together, the results suggest that ABI3 is at least partly regulated by light.  (+info)

Higher cardol homologs (5-alkylresorcinols) in rye seedlings. (23/1280)

The occurrence of alkylresorcinols, polyketide compounds that in the same homologous series as cardol isolated from Anacardium occidentale (cashew) or bilobol from Ginkgo biloba which are derivatives of 1,3-dihydroxy-5-alk(en)ylbenzene, have been demonstrated in developing rye (Secale cereale L.) kernels. The 3-day-old seedlings grown in sterile conditions already contain detectable amounts of phenolic compounds that were identified as alkylresorcinols. This fraction is the mixture of saturated and enoic homologs of various lengths of the aliphatic side chain. The composition of homologs is similar to that determined in mature grains. The relatively high level of alkylresorcinols in mitochondria and plastids (enhanced approximately twice in the absence of light) suggests that their synthetic pathway and/or biological function may be related to these cellular compartments. Resorcinolic lipids, when present in the external medium, are taken up by seedlings in the energy-dependent manner.  (+info)

Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. (24/1280)

A comparative analysis of all published complete genomes indicated that the putative orthologs of the unannotated ychB gene of Escherichia coli follow the distribution of the dxs, dxr, and ygbP genes, which have been shown to specify enzymes of the deoxyxylulose phosphate pathway of terpenoid biosynthesis, thus suggesting that the hypothetical YchB protein also is involved in that pathway. To test this hypothesis, the E. coli ychB gene was expressed in a homologous host. The recombinant protein was purified to homogeneity and was shown to phosphorylate 4-diphosphocytidyl-2C-methyl-D-erythritol in an ATP-dependent reaction. The reaction product was identified as 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate by NMR experiments with various (13)C-labeled substrate samples. A (14)C-labeled specimen of this compound was converted efficiently into carotenoids by isolated chromoplasts of Capsicum annuum. The sequence of E. coli YchB protein is similar to that of the protein predicted by the tomato cDNA pTOM41 (30% identity), which had been implicated in the conversion of chloroplasts to chromoplasts.  (+info)