gammadelta T cells contribute to control of chronic parasitemia in Plasmodium chabaudi infections in mice. (1/267)

During a primary infection of mice with Plasmodium chabaudi, gammadelta T cells are stimulated and their expansion coincides with recovery from the acute phase of infection in normal mice or with chronic infections in B cell-deficient mice (mu-MT). To determine whether the large gammadelta T cell pool observed in female B cell-deficient mice is responsible for controlling the chronic infection, studies were done using double-knockout mice deficient in both B and gammadelta cells (mu-MT x delta-/-TCR) and in gammadelta T cell-depleted mu-MT mice. In both types of gammadelta T cell-deficient mice, the early parasitemia following the peak of infection was exacerbated, and the chronic parasitemia was maintained at significantly higher levels in the absence of gammadelta T cells. The majority of gammadelta T cells in C57BL/6 and mu-MT mice responding to infection belonged predominantly to a single family of gammadelta T cells with TCR composed of Vgamma2Vdelta4 chains and which produced IFN-gamma rather than IL-4.  (+info)

Identification of the Plasmodium chabaudi homologue of merozoite surface proteins 4 and 5 of Plasmodium falciparum. (2/267)

Previous studies of Plasmodium falciparum have identified a region of chromosome 2 in which are clustered three genes for glycosylphosphatidylinositol (GPI)-anchored merozoite surface proteins, MSP2, MSP5, and MSP4, arranged in tandem. MSP4 and MSP5 both encode proteins 272 residues long that contain hydrophobic signal sequences, GPI attachment signals, and a single epidermal growth factor (EGF)-like domain at their carboxyl termini. Nevertheless, the remainder of their protein coding regions are quite dissimilar. The locations and similar structural features of these genes suggest that they have arisen from a gene duplication event. Here we describe the identification of the syntenic region of the genome in the murine malaria parasite, Plasmodium chabaudi adami DS. Only one open reading frame is present in this region, and it encodes a protein with structural features reminiscent of both MSP4 and MSP5, including a single EGF-like domain. Accordingly, the gene has been designated PcMSP4/5. The homologue of the P. falciparum MSP2 gene could not be found in P. chabaudi; however, the amino terminus of the PcMSP4/5 protein shows similarity to that of MSP2. The PcMSP4/5 gene encodes a protein with an apparent molecular mass of 36 kDa, and this protein is detected in mature stages of the parasite. The protein partitions in the detergent-enriched phase after Triton X-114 fractionation and is localized to the surfaces of trophozoites and developing and free merozoites. The PcMSP4/5 gene is transcribed in both ring and trophozoite stages but appears to be spliced in a stage-specific manner such that the central intron is spliced from the mRNA in the parasitic stage in which the protein is expressed.  (+info)

Transforming growth factor beta-induced failure of resistance to infection with blood-stage Plasmodium chabaudi in mice. (3/267)

The role of transforming growth factor beta (TGF-beta) in infection with Plasmodium chabaudi was investigated with resistant and susceptible mouse models. C57BL/10 mice produced gamma interferon (IFN-gamma) and nitric oxide (NO) shortly after infection and cleared the parasite spontaneously. In contrast, BALB/c mice showed a transient enhancement of TGF-beta production, followed by a relative lack of IFN-gamma and NO production, and succumbed to the infection. However, there was no correlation between levels of serum TGF-beta and splenic TGF-beta mRNA in both mouse strains before and after infection. Administration of recombinant TGF-beta (rTGF-beta) rendered resistant mice susceptible because of suppression of subsequent production of IFN-gamma and NO. Administration of anti-TGF-beta antibody to the infected BALB/c mice resulted in remarkable increases in serum IFN-gamma and NO, and the mice resisted the infection. Splenic CD4(+) T and CD11b+ cells of C57BL/10 mice were significantly activated after infection, but this was completely abrogated by administration of rTGF-beta. These results suggested that, in the P. chabaudi-susceptible but not resistant mice, production of TGF-beta was promoted, and subsequent failure of IFN-gamma- and NO-dependent resistance to the parasite was induced. This study is the first to indicate that TGF-beta production was the key event in failure of resistance to mouse malaria.  (+info)

Deficiency in tumor necrosis factor alpha activity does not impair early protective Th1 responses against blood-stage malaria. (4/267)

Blood-stage Plasmodium chabaudi AS infection was controlled by 4 weeks in mice with deletion of tumor necrosis factor p55 and p75 receptors (TNFR-knockout [KO]) and control wild-type (WT) mice, although female TNFR-KO mice showed slightly but significantly higher parasitemia immediately following the peak. Serum interleukin 12 (IL-12) p70 and gamma interferon (IFN-gamma) levels were similar but tumor necrosis factor alpha levels were significantly higher in TNFR-KO mice than in WT controls. Splenic IL-12 receptor beta1 and beta2 and IFN-gamma mRNA expression, as well as spleen cell production of IFN-gamma and IL-4, were comparable in both mouse types, but IL-10 production was significantly higher in cells from TNFR-KO mice than in cells from WT mice. Lipopolysaccharide-induced NO secretion by splenic macrophages in vitro was significantly reduced but systemic NO3- levels were similar in infected TNFR-KO and WT mice.  (+info)

Modulation of experimental blood stage malaria through blockade of the B7/CD28 T-cell costimulatory pathway. (5/267)

Recent studies have implicated cytokines associated with CD4+ T lymphocytes of both T helper (Th)1 and Th2 subsets in resistance to experimental blood stage malaria. As the B7/CD28 costimulatory pathway has been shown to influence the differentiation of Th cell subsets, we investigated the contribution of the B7 molecules CD80 and CD86 to Th1/Th2 cytokine and immunoglobulin isotype profiles and to the development of a protective immune response to malaria in NIH mice infected with Plasmodium chabaudi. Effective blockade of CD86/CD28 interaction was demonstrated by elimination of interleukin (IL)-4 and up-regulation of interferon (IFN)-gamma responses by P. chabaudi-specific T cells and by reduction of P. chabaudi-specific immunoglobulin G1 (IgG1). The shift towards a Th1 cytokine pattern corresponded with efficient control of acute parasitaemia but an inability to resolve chronic infection. Moreover, combined CD80/CD86 blockade by using anti-CD80 and anti-CD86 monoclonal antibodies raised IFN-gamma production over that seen with CD86 blockade alone, with augmentation of this Th1-associated cytokine reducing levels of peak primary parasitaemia. These results demonstrate that IL-4 production by T cells in P. chabaudi-infected NIH mice is dependent upon CD86/CD28 interaction and that IL-4 and IFN-gamma contribute significantly, at different times of infection, to host resistance to blood stage malaria. In addition, combined CD80/CD86 blockade resulted in preferential expansion of IFN-gamma-producing T cells during P. chabaudi infection, suggesting that costimulatory pathways other than B7/CD28 may contribute to T-cell activation during continuous antigen stimulation. This study indicates a role for B7/CD28 costimulation in modulating the CD4+ T-cell response during malaria, and further suggests involvement of this pathway in other infectious and autoimmune diseases in which the Th cell immune response is also skewed.  (+info)

Selection for high and low virulence in the malaria parasite Plasmodium chabaudi. (6/267)

What stops parasites becoming ever more virulent? Conventional wisdom and most parasite-centred models of the evolution of virulence suppose that risk of host (and, hence, parasite) death imposes selection against more virulent strains. Here we selected for high and low virulence within each of two clones of the rodent malaria parasite Plasmodium chabaudi on the basis of between-host differences in a surrogate measure of virulence--loss of live weight post-infection. Despite imposing strong selection for low virulence which mimicked 50-75% host mortality, the low virulence lines increased in virulence as much as the high virulence lines. Thus, artificial selection on between-host differences in virulence was unable to counteract natural selection for increased virulence caused by within-host selection processes. The parasite's asexual replication rate and number of sexual transmission forms also increased in all lines, consistent with evolutionary models explaining high virulence. An upper bound to virulence, though not the asexual replication rate, was apparent, but this bound was not imposed by host mortality. Thus, we found evidence of the factors assumed to drive evolution of increased virulence, but not those thought to counter this selection.  (+info)

Plasticity of immune responses suppressing parasitemia during acute Plasmodium chabaudi malaria. (7/267)

gammadelta T cells have a crucial role in cell-mediated immunity (CMI) against P. chabaudi malaria, but delta-chain knockout (KO) (deltao/o) mice and mice depleted of gammadelta T cells with mAb cure this infection. To address the question of why mice deficient in gammadelta T cells resolve P. chabaudi infections, we immunized deltao/o mice by infection with viable blood-stage parasites. Sera from infection-immunized mice were tested for their ability to protect JHo/o, deltao/o double KO mice passively against P. chabaudi challenge infection. The onset of parasitemia was significantly delayed in mice receiving immune sera, compared with saline or uninfected serum controls. Immune sera were then fractionated into Ig-rich and Ig-depleted fractions by HPLC on a protein G column. Double KO mice were passively immunized with either fraction and challenged with P. chabaudi. The onset of parasitemia was significantly delayed in recipients of the Ig-rich fraction compared with recipients of the Ig-poor fraction of immune sera. We conclude that deltao/o mice, which are unable to activate CMI against the parasite, suppress P. chabaudi infection by a redundant Ab-mediated process.  (+info)

Early IL-12 p70, but not p40, production by splenic macrophages correlates with host resistance to blood-stage Plasmodium chabaudi AS malaria. (8/267)

In this study, we compared synthesis of IL-12, a potent Th1-inducing cytokine, by splenic macrophages recovered from resistant C57Bl/6 (B6) mice, which develop predominantly Th1 responses, and susceptible A/J mice that mount primarily Th2 responses during early Plasmodium chabaudi AS infection. Quantitative analysis of IL-12 p40 and p70 release by ELISA revealed significant differences between resistant B6 and susceptible A/J mice in the synthesis of biologically active IL-12 p70, but not p40, by splenic macrophages during early blood-stage P. chabaudi AS infection. Despite up-regulation in p40 and p35 mRNA levels, spontaneous release of p40 in vitro by splenic macrophages was not significantly increased following infection in either mouse strain. In contrast, spontaneous release of p70 by splenic macrophages was increased in cells from B6 mice and levels were significantly higher compared with A/J mice. Furthermore, compared with infected A/J hosts, splenic macrophages recovered from infected B6 mice produced significantly greater quantities of IL-12 p70, but not p40, in vitro, following stimulation with lipopolysaccharide (LPS) or malaria parasite antigen (PRBC). Moreover, we found significant increases in the percentage of macrophages earlier in the spleens of infected B6 mice that could further contribute to differences in total p70 levels in vivo. Taken together, these data suggest that macrophage IL-12 synthesis may contribute to the polarization of Th responses seen in resistant B6 and susceptible A/J mice during acute blood-stage malaria.  (+info)