Intracellular distribution of psychotropic drugs in the grey and white matter of the brain: the role of lysosomal trapping. (1/11)

1. Since the brain is not a homogenous organ (i.e. the phospholipid pattern and density of lysosomes may vary in its different regions), in the present study we examined the uptake of psychotropic drugs by vertically cut slices of whole brain, grey (cerebral cortex) and white (corpus callosum, internal capsule) matter of the brain and by neuronal and astroglial cell cultures. 2. Moreover, we assessed the contribution of lysosomal trapping to total drug uptake (total uptake=lysosomal trapping+phospholipid binding) by tissue slices or cells conducting experiments in the presence and absence of 'lysosomal inhibitors', i.e., the lysosomotropic compound ammonium chloride (20 mM) or the Na(+)/H(+)-ionophore monensin (10 microM), which elevated the internal pH of lysosomes. The initial concentration of psychotropic drug in the incubation medium was 5 microM. 3. Both total uptake and lysosomal trapping of the antidepressants investigated (imipramine, amitriptyline, fluoxetine, sertraline) and neuroleptics (promazine, perazine, thioridazine) were higher in the grey matter and neurones than in the white matter and astrocytes, respectively. Lysosomal trapping of the psychotropics occurred mainly in neurones where thioridazine sertraline and perazine showed the highest degree of lysosomotropism. 4. Distribution interactions between antidepressants and neuroleptics took place in neurones via mutual inhibition of lysosomal trapping of drugs. 5. A differential number of neuronal and glial cells in the brain may mask the lysosomal trapping and the distribution interactions of less potent lysosomotropic drugs in vertically cut brain slices. 6. A reduction (via a distribution interaction) in the concentration of psychotropics in lysosomes (depot), which leads to an increase in their level in membranes and tissue fluids, may intensify the pharmacological action of the combined drugs.  (+info)

Examination of iron (III) and hexacyanoferrate (III) ions as reagents for the spectrophotometric determination of promazine and perazine. (2/11)

Iron (III) chloride and potassium hexacyanoferrate (III) have been tested as reagents for the determination of promazine hydrochloride and perazine. The methods are based on the oxidation of phenothiazines by FeCl3 and K3[Fe(CN)6] in perchloric acid medium. The optimal conditions for the formation of oxidation products of promazine and perazine were examined. The absorption spectra in the UV-VIS region were recorded.  (+info)

Perazine as a potent inhibitor of human CYP1A2 but not CYP3A4. (3/11)

The effects of perazine on the activities of CYP1A2 and CYP3A4 in a primary culture of human hepatocytes of one patient were studied in vitro. The CYPs activities were assessed by measuring the rate of acetanilide 4-hydroxylation (CYP1A2) and cyclosporine A oxidation (CYP3A4) after treatment with TCDD (a CYP1A subfamily inducer) or rifampicin (mainly a CYP3A4 inducer). The amounts of the metabolites formed in hepatocytes were assayed in the extracellular medium using the HPLC method. TCDD and rifampicin induced the formation of 4-hydroxyacetanilide and cyclosporine A metabolites (monohydroxycyclosporine A, dihydroxycyclosporine A, N-desmethylcyclosporine A), respectively. The formation of 4-hydroxyacetanilide was strongly inhibited by three different concentrations of perazine (10, 25 and 50 microM) reaching 8, 3 and 2% of the control value, respectively. In the case of CYP3A4 activity, no such an effect of perazine was observed. Perazine showed only a week inhibition of the activity of cyclosporine A oxidase (to 96-86% of the control value). The obtained results suggest a strong inhibitory effect of perazine on human CYP1A2 activity with predicted Ki value similar to those of the known for CYP1A2 inhibitors, such as furafylline and fluvoxamine.  (+info)

Effects of cytochrome P-450 inducers on the perazine metabolism in a primary culture of human hepatocytes. (4/11)

The metabolism of perazine in a primary culture of human hepatocytes after treatment of cells with TCDD (a CYP1A1/2 inducer) or rifampicin (mainly a CYP3A4 inducer) were studied in vitro. The concentrations of perazine and its main metabolites (perazine 5-sulfoxide, N-desmethylperazine) formed in hepatocytes were assayed in the extracellular medium using the HPLC method. TCDD and rifampicin induced the formation of perazine 5-sulfoxide, however, such an effect was not observed in the case of N-desmethylperazine. The accumulation of perazine 5-sulfoxide in the extracellular medium was enhanced until up to 4 h by rifampicin, and until up to 8 h byTCDD. After 24 h, perazine and perazine 5-sulfoxide were not detected in the extracellular medium of the inducer-treated cultures, except for perazine 5-sulfoxide in the TCDD-treated cultures The obtained results indicate that CYP1A2 and CYP3A4 are involved in the perazine metabolism via 5-sulfoxidation pathway.  (+info)

Direct effects of neuroleptics on the activity of CYP2A in the liver of rats. (5/11)

The aim of the present study was to investigate the influence of classic and atypical neuroleptics on the activity of rat CYP2A measured as a rate of testosterone 7alpha-hydroxylation. The reaction was studied in control liver microsomes in the presence of neuroleptics, as well as in microsomes of rats treated intraperitoneally (i.p.) for one day or two weeks (twice a day) with pharmacological doses (mg/kg) of the drugs (promazine, levomepromazine, thioridazine, perazine 10, chlorpromazine, haloperidol 0.3, risperidone 0.1, sertindole 0.05), in the absence of the neuroleptics in vitro. Most of the neuroleptics added in vitro to control liver microsomes decreased the activity of the rat CYP2A. Chlorpromazine (Ki = 11 microM) was the most potent inhibitor of the rat CYP2A among the studied drugs, whose effect was more pronounced than that of the other tested phenothiazines (Ki = 41-83 microM), haloperidol (Ki = 190 microM) or sertindole (Ki = 78 microM). Risperidone was not active in this respect. The investigated neuroleptics when given to rats in vivo for one day or two weeks--did not produce any indirect inhibitory effect on CYP2A via other mechanisms. The obtained results show direct inhibitory effects of phenothiazine neuroleptics on the activity of CYP2A in rat liver, which may be of physiological importance for the metabolism of testosterone, considering simultaneous inhibition of CYP2C11 and CYP3A by those drugs.  (+info)

Validation of derivative spectrophotometry method for determination of active ingredients from neuroleptics in pharmaceutical preparations. (6/11)

First (DI) and second (D2) order derivative spectrophotometric method with an application of base line to peak technique was used for determination of active pharmaceutical ingredients (API) at two wavelengths: fluphenazine (D1 at lambda = 251 nm and lambda = 265 nm, D2 at lambda = 246 nm and lambda = 269 nm), pernazine (D1 at lambda = 246 nm and lambda = 258 nm, D2 at lambda = 254 nm and lambda = 262 nm), haloperidol (DI at = 235 nm and lambda = 253 nm, D2 at lambda = 230 nm and lambda = 246 nm), and promazine (D1 at lambda = 246 nm and lambda = 251 nm, D2 at lambda = 255 nm and lambda = 262 nm). Linear dependence of derivative values on analyte concentration is maintained in a range 3.12 microg x mL(-1) - 44.80 microg x mL(-1). Detection and determination limits are in the range 0.51 - 3.23 microg x mL(-1) and 1.27 microg x mL(-1) - 9.80 microg x mL(-1), respectively. Determination results of drug constituents are very accurate. Recovery percentage is in a range 95.50% - 103.60%.  (+info)

Perazine at therapeutic drug concentrations inhibits human cytochrome P450 isoenzyme 1A2 (CYP1A2) and caffeine metabolism--an in vitro study. (7/11)

The aim of the present study was to estimate the inhibitory effect of perazine, a phenothiazine neuroleptic with piperazine structure in a side chain, on human CYP1A2 activity measured as a rate of caffeine 3-N- and 1-N-demethylation. Moreover, the influence of perazine on other caffeine metabolic pathways such as 7-N-demethylation (CYP1A2, CYP2C8/9, CYP3A4) and 8-hydroxylation (CYP3A4, CYP1A2, CYP2C8/9) was also determined. The Dixon analysis showed that in both human liver microsomes and Supersomes CYP1A2 perazine potently and to a similar degree inhibited caffeine 3-N-demethylation (K(i) = 3.5 microM) and 1-N-demethylation (K(i) = 5 microM). Perazine moderately diminished the rate of caffeine 7-N-demethylation in Supersomes CYP1A2 (K(i) = 11.5 microM) and liver microsomes (K(i) = 20 microM), and attenuated C-8-hydroxylation (K(i) = 15.5 microM) in Supersomes CYP1A2. On the other hand, perazine weakly inhibited caffeine C-8-hydroxylation in liver microsomes (K(i) = 98 microM). About 80% of basal CYP1A2 activity was reduced by the therapeutic concentrations of perazine (5-10 microM). The obtained results show that perazine at its therapeutic concentrations is a potent inhibitor of human CYP1A2. Hence, taking account of CYP1A2 contribution to the metabolism of endogenous substances (steroids), drugs (xanthine derivatives, phenacetin, propranolol, imipramine, phenothiazine neuroleptics, clozapine) and carcinogenic compounds, the inhibition of CYP1A2 by perazine may be of physiological, pharmacological and toxicological importance.  (+info)

The role of CYP2D6 and TaqI A polymorphisms in malignant neuroleptic syndrome: two case reports with three episodes. (8/11)

Malignant neuroleptic syndrome (MNS) is a serious and potentially fatal side-effect of neuroleptic treatment. Beside antipsychotic drugs, other psychotropic drugs such as antidepressants and lithium carbonate can cause this life threatening side-effect. Underlying mechanism of this side-effect is still unknown and debated. So far some risk factors have been identified, with clinical observations and recent pharmacogenetic research suggesting (with inconsistent findings) correlation between genetic mechanisms and predisposition to MNS. Polymorphisms of CYP2D6 enzyme through which most psychotropic drugs are metabolized and TaqIA DRD2 which is target for antipsychotic drugs could be the link between pharmacogenetic factors and potential for development of MNS. In this paper we present two case reports with clinical presentation of three consecutive MNS. One patient developed MNS while he was taking combination of drugs: first time haloperidol, promazine and fluphenazine, second time fluphenazine and perazine and third time clozapine, promazine and valproic acid consecutively. The other patient developed MNS while taking following combination of drugs: first time haloperidol and lithium carbonate, second time risperidone and third time clozapine consecutively. Pharmacogenetic analysis for CYP2D6 and TaqI A DRD2 polymorphisms for both patients was done. Genotypisation of CYP2D6*1*3*4*5*6 in both patients showed no evidence of poor metabolizer phenotype. On the other hand, first patient was heterozygous for CYP2D6*4 (genotype *1/*4). CYP2D6 polymorphisms could have clinical significance because may lead to toxicity and unwanted side-effects in standard usual antipsychotic dose ranges. Analysis Taql A DRD2 polymorphism for first patient showed that he is heterozygous for A1 allele (genotype A1A2) which is commonly associated with predisposition to MNS. According to our literature three consecutive MNS are rarely described, and incidence of MNS generally is too low to perform clinical research. Many patophysiological mechanisms may probably underlie this complex and potentially fatal syndrome, still unknown etiology. But, genetic mechanisms could be significant. Further pharmacogenetic research, findings and analysis in patients who develop single or repeated MNS are strongly recommended. In long term, pharmacogenetic analysis, implemented in daily clinical practice, could help in prevention of this extremely serious side-effect.  (+info)