Ecabet sodium, a novel locally-acting anti-ulcer agent, protects the integrity of the gastric mucosal gel layer from pepsin-induced disruption in the rat. (9/1155)

BACKGROUND: Ecabet sodium, a novel non-systemic anti-ulcer agent, possesses high affinity to gastric adherent mucus, which plays an important role in the protection of the gastric epithelium against acid and pepsin. AIM: To assess the effect of ecabet on pepsin-induced degradation of the structure of the mucus gel layer. METHODS: Everted sacs of rat stomach were incubated in HCl solution containing pepsin with or without ecabet. Pepsin-induced release of the cleaved peptides and hexosamine from the sacs was determined. Changes in the molecular size of glycoproteins in the adherent mucus (using gel filtration methods) and in the morphology of the epithelium (using both light and scanning electron microscopy) were also examined. RESULTS: Ecabet reduced the pepsin-induced release of peptides and hexosamine, depending on its content in the adherent mucus. Pepsin treatment partially lowered the molecular weight of native glycoproteins in the adherent mucus, caused exfoliation of the epithelial cells, and degraded the network-like ultrastructure of the mucus layer, giving it a lumpy, globular appearance. Ecabet prevented both the pepsin-induced molecular size shift in mucus glycoproteins, and morphological alteration of the epithelium, including ultrastructural derangement of the mucus gel layer. CONCLUSION: Ecabet protects the polymeric structure of mucus glycoproteins from proteolytic degradation by pepsin, and thus maintains integrity of the gastric mucus gel layer.  (+info)

The structure and function of acid proteases. V. Comparative studies on the specific inhibition of acid proteases by diazoacetyl-DL-norleucine methyl ester, 1,2-epoxy-3-(p-nitrophenoxy) propane and pepstatin. (10/1155)

Comparative studies have been made on the effects of diazoacetyl-DL-norleucine methyl ester (DAN), 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) and pepstatin on acid proteases, including those from Acrocylindrium sp., Aspergillus niger, Aspergillus saitoi, Mucor pusillus, Paecilomyces varioti, Rhizopus chinensis, and Trametes sanguinea, and also porcine pepsin [EC 3.4.23.1] and calf rennin [EC 3.4.23.4] for comparative purposes. These enzymes were rapidly inactivated at similar rates and in 1:1 stiochiometry by reaction with DAN in the presence of cupric ions. The pH profiles of inactivation of these enzymes were similar and had optima at pH 5.5 to 6. They were also inactivated at similar rates by reaction with EPNP, with concomitant incorporation of nearly 2 EPNP molecules per molecule of enzyme. The pH profiles of inactivation were again similar and maximal inactivation was observed at around pH 3 to 4. Some of the EPNP-inactivated enzymes were treated with DAN and shown still to retain reactivity toward DAN. All these enzymes were inhibited strongly by pepstatin, and the reactions of DAN and EPNP with them were also markedly inhibited by prior treatment with pepstatin. These results indicate that the active sites of these enzymes are quite similar and that they presumably have at least two essential carboxyl groups at the active site in common, one reactive with DAN in the presence of cupric ions and the other reactive with EPNP, as has already been demonstrated for porcine pepsin and calf rennin. Pepstatin appears to bind at least part of the active site of each enzyme in a simmilar manner.  (+info)

Helicobacter heilmannii associated erosive gastritis. (11/1155)

The spiral bacteria, Helicobacter heilmannii (H. heilmannii), distinct from Helicobacter pylori (H. pylori), was found in the gastric mucosa of a 71-year-old man without clinical symptoms. The endoscopic examination revealed erosive gastritis. Rapid urease test from the antral specimen was positive, but both culture and immunohistological staining for H. pylori were negative. Touch smear cytology showed tightly spiral bacteria, which were consistent with H. heilmannii. At the second endoscopy after medication regimen for eradication of H. pylori, inflammation was decreased and the rapid urease test was negative. The second cytology showed no evidence of H. heilmannii. Anti-H. pylori therapy may be a useful medication for H. heilmannii.  (+info)

Site-directed removal of N-glycosylation sites in human gastric lipase. (12/1155)

Human gastric lipase (HGL) is a highly glycosylated protein, as glycan chains account for about 15% of the molecular mass of the native HGL. Four potential N-glycosylation consensus sites (Asn15, 80, 252 and 308) can be identified from the HGL amino acid sequence. We studied the functional role of the individual N-linked oligosaccharide chains by removing one by one all the N-glycosylation sites, via Ala residue replacement by site-directed mutagenesis of Ser and Thr residues from the consensus sequences Asn-X-Ser/Thr. Mutagenized cDNA constructs were heterologously expressed in the baculovirus/insect cell system. Removal of oligosaccharides either at Asn15, 80 or 252 was found to have no significant influence on the enzymatic activity measured in vitro. However, the absence of glycosylation at Asn308, as well as a total deglycosylation, reduced the specific enzymatic activity of recombinant HGL (r-HGL), measured on short- and long-chain triglycerides, to about 50% of normal values. Furthermore, biosynthesis and secretion of r-HGL markedly dropped when all four potential glycosylation sites were mutated. The kinetics of the interfacial adsorption of r-HGL and the completely deglycosylated r-HGL (four-site mutant) were found to be identical when recording the changes with time of the surface pressure either at the air-water interface or in the presence of an egg phosphatidylcholine (PtdCho) monomolecular film spread at various initial surface pressures. This indicates that both recombinant HGLs are identical, as far as recognition of phospholipid film and adsorption on PtdCho are concerned. The N-glycosylation of HGL may contribute to the enzyme stability in the stomach, as under acidic conditions the degradation by pepsin of the unglycosylated r-HGL is increased.  (+info)

Collagenase degrades collagen in vivo in the ischemic heart. (13/1155)

Previously, we showed that ischemic rat heart contains an activated procollagenase capable of degrading collagen in vitro. We now demonstrate that the collagen resident in such hearts (in vivo) also becomes degraded, producing characteristic fragments implicating the action of an activated collagenase. The evidence is the appearance of amino-terminal dansyl-Ile (+dansyl-Leu) residues in pepsin digests of re-oxygenated rat hearts and immunoblots showing 3/4 length (alphaA) fragments from type I collagen. Also, in ischemic rat myocardium, alphaA(I) and alphaA(III) fragments were detected in pepsin digests. The time periods required for the cleavage and degradation of collagen suggest the participation of a procollagenase that becomes activated. Results demonstrate for the first time that an interstitial collagenase in such hearts initiates in vivo degradation of types I and III collagens.  (+info)

Identification of two distinct antibacterial domains within the sequence of bovine alpha(s2)-casein. (14/1155)

Two distinct domains with antibacterial activity were isolated from a peptic hydrolysate of bovine alpha(s2)-casein. The digested alpha(s2)-casein was fractionated by cation-exchange chromatography, after which the peptides in the two active fractions obtained were separated by high-performance liquid chromatography and sequenced by electrospray-ionization tandem mass spectrometry. The major component in each active fraction, f(183-207) and f(164-179), was further purified and the antibacterial activity of these components was tested against several microorganisms. Depending on the target bacterial strain, these peptides exhibited minimum inhibitory concentrations between 8 and 99 microM. Peptide f(183-207) exhibited a consistently higher antibacterial activity than f(164-179), although both peptides showed a comparable hemolytic effect. A method of in situ enzymatic hydrolysis on a cation-exchange membrane to obtain a fraction enriched in the most active antibacterial domain is presented. The antibacterial and hemolytic activities are discussed in relation to the structure and hydrophobicity of the peptides.  (+info)

Modeling deuterium exchange behavior of ERK2 using pepsin mapping to probe secondary structure. (15/1155)

Recently, mass spectrometry has been applied to studies of hydrogen exchange of backbone amides, allowing analysis of large proteins at physiological concentrations. Low resolution spatial information is obtained by digesting proteins after exchange into D2O, using electrospray ionization liquid chromatography/mass spectrometry (ESI-LC/MS) to measure deuteration by mass increases of resulting peptides. This study develops modeling paradigms to increase resolution, using the signal transduction kinase ERK2 as a prototype for larger, less stable proteins. In-exchange data for peptides were analyzed by nonlinear least squares and a maximum entropy method, distinguishing amides into fast, intermediate, slow, and nonexchanging classes. Analysis of completely nonexchanging or in-exchanging peptides and peptides with sequence overlaps showed that nonexchanging amides were generally hydrogen bonded and sterically constrained or buried > or = 2.2 A from the protein surface, while fast exchanging hydrogens were generally exposed at the protein surface. In order to more fully understand the intermediate and slow exchanging classes, an empirical model was developed by analyzing published exchange rates in cytochrome c. The model correlated protection factors with a combined dependency on surface accessibility, hydrogen bond length, and position of residues from alpha helix ends. Together with analysis of partial proteolytic products, the derived rules for exchange allowed modeling of exchange behavior of peptides. Substantial deviation from the predicted rates in some cases suggested a role for conformational freedom in regulating fast and intermediate exchanging amides.  (+info)

Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca(2+)-induced conformational changes in the regulatory domain of human cardiac troponin C. (16/1155)

Troponin C (TnC), a calcium-binding protein of the thin filament of muscle, plays a regulatory role in skeletal and cardiac muscle contraction. NMR reveals a small conformational change in the cardiac regulatory N-terminal domain of TnC (cNTnC) on binding of Ca2+ such that the total exposed hydrophobic surface area increases very slightly from 3090 +/- 86 A2 for apo-cNTnC to 3108 +/- 71 A2 for Ca(2+)-cNTnC. Here, we show that measurement of solvent accessibility for backbone amide protons by means of solution-phase hydrogen/deuterium (H/D) exchange followed by pepsin digestion, high-performance liquid chromatography, and electrospray ionization high-field (9.4 T) Fourier transform Ion cyclotron resonance mass spectrometry is sufficiently sensitive to detect such small ligand binding-induced conformational changes of that protein. The extent of deuterium incorporation increases significantly on binding of Ca2+ for each of four proteolytic segments derived from pepsin digestion of the apo- and Ca(2+)-saturated forms of cNTnC. The present results demonstrate that H/D exchange monitored by mass spectrometry can be sufficiently sensitive to detect and identify even very small conformational changes in proteins, and should therefore be especially informative for proteins too large (or too insoluble or otherwise intractable) for NMR analysis.  (+info)