Functional protective role for mucin glycosylated repetitive domains. (25/1155)

Mucins carry out a number of protective roles, some of which are more easily studied than others. One mucin function is believed to be the protection of the mucosal epithelium against acidic and proteolytic damage in the stomach and intestines. In the present work, a portion of stomach mucin tandem repeat sequence (Muc6) was joined to the catalytic domain of a reporter enzyme [human milk cholesterol esterase (CE)] to determine whether the former can protect the latter protein from damage. This Muc6 domain replaced a unique series of glycosylated C-terminal repeats normally present in CE. The chimeric protein (CE/Muc6) was expressed in two different cell lines and its properties compared to recombinant full-length CE and a truncated version of CE which contained only the catalytic domain (CE/trunc). Results showed that both CE and CE/Muc6 were resistant to denaturation by acid and to proteolysis by pepsin at low pH values or by pancreatic proteases compared to CE/trunc. Thus, a stomach Muc6 domain is sufficient to confer stability on the CE catalytic domain, demonstrating a protective effect by a glycosylated mucin sequence.  (+info)

Limited proteolysis of bovine alpha-lactalbumin: isolation and characterization of protein domains. (26/1155)

The partly folded states of alpha-lactalbumin (alpha-LA) exposed to acid solution at pH 2.0 (A-state) or at neutral pH upon EDTA-mediated removal of the single protein-bound calcium ion (apo form) have been probed by limited proteolysis experiments. These states are nowadays commonly considered to be molten globules and thus protein-folding intermediates. Pepsin was used for proteolysis at acid pH, while proteinase K and chymotrypsin at neutral pH. The expectations were that these proteolytic probes would detect sites and/or chain regions in the partly folded states of alpha-LA sufficiently dynamic, or even unfolded, capable of binding and adaptation to the specific stereochemistry of the protease's active site. A time-course analysis of the proteolytic events revealed that the fast, initial proteolytic cuts of the 123-residue chain of alpha-LA in its A-state or apo form by the three proteases occur at the same chain region 39-54, the actual site(s) of cleavage depending upon the protease employed. This region in native alpha-LA encompasses the beta-sheets of the protein. Subsequent cleavages occur mostly at chain regions 31-35 and 95-105. Four fragment species of alpha-LA have been isolated by reverse-phase high-performance liquid chromatography, and their conformational properties examined by circular dichroism and fluorescence emission spectroscopy. The single chain fragment 53-103, containing all the binding sites for calcium in native alpha-LA and cross-linked by two disulfide bridges, maintains in aqueous buffer and in the presence of calcium ions a folded structure characterized by the same content of alpha-helix of the corresponding chain segment in native alpha-LA. Evidence for some structure was also obtained for the two-chain species 1-40 and 104-123, as well as 1-31 and 105-123, both systems being covalently linked by two disulfide bonds. In contrast, the protein species given by fragment 1-34 connected to fragment 54-123 or 57-123 via four disulfide bridges adopts in solution a folded structure with the helical content expected for a native-like conformation. Of interest, the proteolytic fragment species herewith isolated correspond to the structural domains and subdomains of alpha-LA that can be identified by computational analysis of the three-dimensional structure of native alpha-LA (Siddiqui AS, Barton GI, 1995, Protein Sci 4:872-884). The fast, initial cleavages at the level of the beta-sheet region of native alpha-LA indicate that this region is highly mobile or even unfolded in the alpha-LA molten globule(s), while the rest of the protein chain maintains sufficient structure and rigidity to prevent extensive proteolysis. The subsequent cleavages at chain segment 95-105 indicate that also this region is somewhat mobile in the A-state or apo form of the protein. It is concluded that the overall domain topology of native alpha-LA is maintained in acid or at neutral pH upon calcium depletion. Moreover, the molecular properties of the partly folded states of alpha-LA deduced here from proteolysis experiments do correlate with those derived from previous NMR and other physicochemical measurements.  (+info)

Improvement of the physical properties of pepsin-solubilized elastin-collagen film by crosslinking. (27/1155)

Pepsin-solubilized elastin (PSE)-conjugated collagen film was prepared from a collagen matrix with PSE by drying it and crosslinking the constituents with water-soluble carbodiimide or microbial transglutaminase to improve the physical properties of the collagen film. The crosslinking reduced the solubility and improved the thermal stability, the thermal transition properties, and the elasticity of the control film in water. In particular, water-soluble carbodiimide strongly influenced these properties. The PSE-conjugated collagen film showed good permeation by water-soluble tasting substances such as oligosaccharides and amino acids, but poor permeation by polysaccharide, protein, and hydrophobic substances such as retinol and cholesterol.  (+info)

Protease activity of CND41, a chloroplast nucleoid DNA-binding protein, isolated from cultured tobacco cells. (28/1155)

CND41 is a 41 kDa DNA-binding protein isolated from chloroplast nucleoids of cultured tobacco cells. The presence of the active domain of aspartic protease in the deduced amino acid sequence of CND41 suggests that it has proteolytic activity. To confirm this, CND41 was highly purified from cultured tobacco cells and its proteolytic activity was characterized with fluorescein isothiocyanate-labeled hemoglobin as the substrate. The purified CND41 had strong proteolytic activity at an acidic pH (pH 2-4). This activity was inhibited by various chemicals, including the nucleoside triphosphates, NADPH, Fe(3+) and sodium dodecyl sulfate.  (+info)

Anticoagulative effect of pepsin. (29/1155)

Anticoagulative effect of pepsin is observed in vitro when its concentration is 36 microM and higher. This effect is due to inhibition of fibrin monomer polymerization. Protamine abolishes anticoagulative effect of pepsin. Pepsin does not influence platelet aggregation induced by ADP and collagen.  (+info)

P2X purinoceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation. (30/1155)

1. Using an in vitro single unit recording technique we studied the changes in mechanical and chemical sensitivity of vagal afferent fibres in acute oesophagitis, with particular attention to inflammatory products such as purines. 2. Histologically verified oesophagitis was induced by oesophageal perfusion of 1 mg ml-1 pepsin in 150 mM HCl in anaesthetized ferrets for 30 min on two consecutive days. Controls were infused with 154 mM NaCl. 3. The number of action potentials evoked in oesophageal mucosal afferents by mucosal stroking with calibrated von Frey hairs (10-1000 mg) was stimulus dependent. In oesophagitis responsiveness was reduced across the range of stimuli compared with controls. 4. Topical application of the P2X purinoceptor agonist alphabeta-methylene ATP had no direct excitatory effect on afferents. In oesophagitis, but not in controls, there was a significant increase in responses to stroking with von Frey hairs during superfusion with alphabeta-methylene ATP (1 microM). 5. Mucosal afferents responded directly to one or more chemical stimuli: 26 % (5/19 afferents) responded in controls, and 47 % (7/15 afferents) in oesophagitis. There were no differences in responsiveness to bradykinin (1 microM), prostaglandin E2 (100 microM), 5-hydroxytryptamine (100 microM), capsaicin (1 mM) or hydrochloric acid (150 mM) between control and oesophagitis groups. 6. We conclude that a sensitizing effect of a P2X purinoceptor agonist on mechanosensory function is induced in oesophagitis. This effect is offset by a decrease in basal mechanosensitivity.  (+info)

Lysosomal cysteine proteases: more than scavengers. (31/1155)

Lysosomal cysteine proteases were believed to be mainly involved in intracellular protein degradation. Under special conditions they have been found outside lysosomes resulting in pathological conditions. With the discovery of a series of new cathepsins with restricted tissue distributions, it has become evident that these enzymes must be involved in a range of specific cellular tasks much broader than as simple housekeeping enzymes. It is therefore timely to review and discuss the various physiological roles of mammalian lysosomal papain-like cysteine proteases as well as their mechanisms of action and the regulation of their activity.  (+info)

The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases. (32/1155)

Like most proteolytic enzymes, the aspartic proteinases bind substrates and most inhibitors within an extended active site cleft. Bound ligands typically adopt a beta-strand conformation. Interactions with groups on both sides of the cleft determine the primary as well as secondary specificity of the enzymes. We have pursued the discovery of the sometimes subtle distinctions between members of the aspartic proteinase family by two routes. In the first case, we have constructed sets of oligopeptide substrates with systematic variation in each position to assess interactions at one position at a time. In the second type of experiment, we have altered residues of the enzymes in order to test theories of selectivity. The combination of the two approaches has provided a better understanding of the forces involved in determining specificity of enzyme action.  (+info)