Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. (1/12)

The conserved two-component regulatory system GacS/GacA determines the expression of extracellular products and virulence factors in a variety of Gram-negative bacteria. In the biocontrol strain CHA0 of Pseudomonas fluorescens, the response regulator GacA is essential for the synthesis of extracellular protease (AprA) and secondary metabolites including hydrogen cyanide. GacA was found to exert its control on the hydrogen cyanide biosynthetic genes (hcnABC) and on the aprA gene indirectly via a posttranscriptional mechanism. Expression of a translational hcnA'-'lacZ fusion was GacA-dependent whereas a transcriptional hcnA-lacZ fusion was not. A distinct recognition site overlapping with the ribosome binding site appears to be primordial for GacA-steered regulation. GacA-dependence could be conferred to the Escherichia coli lacZ mRNA by a 3-bp substitution in the ribosome binding site. The gene coding for the global translational repressor RsmA of P. fluorescens was cloned. RsmA overexpression mimicked partial loss of GacA function and involved the same recognition site, suggesting that RsmA is a downstream regulatory element of the GacA control cascade. Mutational inactivation of the chromosomal rsmA gene partially suppressed a gacS defect. Thus, a central, GacA-dependent switch from primary to secondary metabolism may operate at the level of translation.  (+info)

Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. (2/12)

Pseudomonas fluorescens CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that substantially contributes to this strain's biocontrol ability. Cyanogenesis is induced by oxygen-limiting conditions, but abolished by iron depletion. In P. fluorescens, the anaerobic regulator ANR and the global activator GacA are both required for the maximal expression of the HCN biosynthetic genes hcnABC. The molecular basis of this regulation by ANR and GacA was investigated under conditions of oxygen and iron limitation. A promoter deletion analysis using a translational hcnA'-'lacZ fusion revealed that a conserved FNR/ANR recognition sequence in the -40 promoter region was necessary and sufficient for the regulation by ANR in response to oxygen limitation. Stimulation of hcnA'-'lacZ expression by the addition of iron also depended on the presence of ANR and the FNR/ANR box, but not on GacA, suggesting that in addition to acting as an oxygen-sensitive protein, ANR also responds to iron availability. Expression of the translational hcnA'-'lacZ fusion remained GacA-dependent in hcn promoter mutants that were no longer responsive to ANR, in agreement with earlier evidence for a post-transcriptional regulatory mechanism under GacA control. These data support a model in which cyanogenesis is sequentially activated by ANR at the level of transcription and by components of the GacA network at the level of translation.  (+info)

Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. (3/12)

Virulence factors of Pseudomonas aeruginosa include hydrogen cyanide (HCN). This secondary metabolite is maximally produced at low oxygen tension and high cell densities during the transition from exponential to stationary growth phase. The hcnABC genes encoding HCN synthase were identified on a genomic fragment complementing an HCN-deficient mutant of P. aeruginosa PAO1. The hcnA promoter was found to be controlled by the FNR-like anaerobic regulator ANR and by the quorum-sensing regulators LasR and RhlR. Primer extension analysis revealed two transcription starts, T1 and T2, separated by 29 bp. Their function was confirmed by transcriptional lacZ fusions. The promoter sequence displayed an FNR/ANR box at -42.5 bp upstream of T2 and a lux box centered around -42.5 bp upstream of T1. Expression of the hcn genes was completely abolished when this lux box was deleted or inactivated by two point mutations in conserved nucleotides. The lux box was recognized by both LasR [activated by N-(oxododecanoyl)-homoserine lactone] and RhlR (activated by N-butanoyl-homoserine lactone), as shown by expression experiments performed in quorum-sensing-defective P. aeruginosa mutants and in the N-acyl-homoserine lactone-negative heterologous host P. fluorescens CHA0. A second, less conserved lux box lying 160 bp upstream of T1 seems to account for enhanced quorum-sensing-dependent expression. Without LasR and RhlR, ANR could not activate the hcn promoter. Together, these data indicate that expression of the hcn promoter from T1 can occur under quorum-sensing control alone. Enhanced expression from T2 appears to rely on a synergistic action between LasR, RhlR, and ANR.  (+info)

Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. (4/12)

In this report we describe experiments to investigate a simple virulence model in which Pseudomonas aeruginosa PAO1 rapidly paralyzes and kills the nematode Caenorhabditis elegans. Our results imply that hydrogen cyanide is the sole or primary toxic factor produced by P. aeruginosa that is responsible for killing of the nematode. Four lines of evidence support this conclusion. First, a transposon insertion mutation in a gene encoding a subunit of hydrogen cyanide synthase (hcnC) eliminated nematode killing. Second, the 17 avirulent mutants examined all exhibited reduced cyanide synthesis, and the residual production levels correlated with killing efficiency. Third, exposure to exogenous cyanide alone at levels comparable to the level produced by PAO1 killed nematodes with kinetics similar to those observed with bacteria. The killing was not enhanced if hcnC mutant bacteria were present during cyanide exposure. And fourth, a nematode mutant (egl-9) resistant to P. aeruginosa was also resistant to killing by exogenous cyanide in the absence of bacteria. A model for nematode killing based on inhibition of mitochondrial cytochrome oxidase is presented. The action of cyanide helps account for the unusually broad host range of virulence of P. aeruginosa and may contribute to the pathogenesis in opportunistic human infections due to the bacterium.  (+info)

Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. (5/12)

In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.  (+info)

Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. (6/12)

Hydrogen cyanide (HCN) is a broad-spectrum antimicrobial compound involved in biological control of root diseases by many plant-associated fluorescent pseudomonads. The HCN synthase is encoded by three biosynthetic genes (hcnA, hcnB, and hcnC), but little is known about the diversity of these genes in fluorescent Pseudomonas spp. and in other bacteria. Here, the partial hcnBC sequence was determined for a worldwide collection of biocontrol fluorescent Pseudomonas spp. Phylogenies based on hcnBC and deduced protein sequences revealed four main bacterial groups, but topological incongruences were found between hcnBC and rrs-based phylogenies, suggesting past lateral transfer of hcnBC among saprophytic root-colonizing pseudomonads. Three of the four groups included isolates from different countries and host plants. Yet, these groups corresponded to distinct, ecologically-adapted populations of HCN-producing biocontrol fluorescent pseudomonads, as indicated by high hcnBC distinctness ratio values and the differences in production levels of HCN in vitro found between groups. This is in accordance with previous results on catabolic properties and biocontrol abilities of these strains. HCN synthase gene diversity may thus reflect the adaptive radiation of HCN+ biocontrol fluorescent pseudomonads. Positive correlations were found between HCN production in vitro and plant protection in the cucumber/Pythium ultimum and tomato/Fusarium oxysporum f. sp. radicis-lycopersici pathosystems.  (+info)

Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. (7/12)

The Pseudomonas aeruginosa transcriptional regulator AlgR controls a variety of different processes, including alginate production, type IV pilus function, and virulence, indicating that AlgR plays a pivotal role in the regulation of gene expression. In order to characterize the AlgR regulon, Pseudomonas Affymetrix GeneChips were used to generate the transcriptional profiles of (i) P. aeruginosa PAO1 versus its algR mutant in mid-logarithmic phase, (ii) P. aeruginosa PAO1 versus its algR mutant in stationary growth phase, and (iii) PAO1 versus PAO1 harboring an algR overexpression plasmid. Expression analysis revealed that, during mid-logarithmic growth, AlgR activated the expression of 58 genes while it repressed the expression of 37 others, while during stationary phase, it activated expression of 45 genes and repression of 14 genes. Confirmatory experiments were performed on two genes found to be AlgR repressed (hcnA and PA1557) and one AlgR-activated operon (fimU-pilVWXY1Y2). An S1 nuclease protection assay demonstrated that AlgR repressed both known hcnA promoters in PAO1. Additionally, direct measurement of hydrogen cyanide (HCN) production showed that P. aeruginosa PAO1 produced threefold-less HCN than did its algR deletion strain. AlgR also repressed transcription of two promoters of the uncharacterized open reading frame PA1557. Further, the twitching motility defect of an algR mutant was complemented by the fimTU-pilVWXY1Y2E operon, thus identifying the AlgR-controlled genes responsible for this defect in an algR mutant. This study identified four new roles for AlgR: (i) AlgR can repress gene transcription, (ii) AlgR activates the fimTU-pilVWXY1Y2E operon, (iii) AlgR regulates HCN production, and (iv) AlgR controls transcription of the putative cbb3-type cytochrome PA1557.  (+info)

The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. (8/12)

Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis (CF) patients. One characteristic of P. aeruginosa CF isolates is the overproduction of the exopolysaccharide alginate, controlled by AlgR. Transcriptional profiling analyses comparing mucoid P. aeruginosa strains to their isogenic algR deletion strains showed that the transcription of cyanide-synthesizing genes (hcnAB) was approximately 3-fold lower in the algR mutants. S1 nuclease protection assays corroborated these findings, indicating that AlgR activates hcnA transcription in mucoid P. aeruginosa. Quantification of hydrogen cyanide (HCN) production from laboratory isolates revealed that mucoid laboratory strains made sevenfold more HCN than their nonmucoid parental strains. In addition, comparison of laboratory and clinically derived nonmucoid strains revealed that HCN was fivefold higher in the nonmucoid CF isolates. Moreover, the average amount of cyanide produced by mucoid clinical isolates was 4.7 +/- 0.85 micromol of HCN/mg of protein versus 2.4 +/- 0.40 micromol of HCN/mg of protein for nonmucoid strains from a survey conducted with 41 P. aeruginosa CF isolates from 24 patients. Our data indicate that (i) mucoid P. aeruginosa regardless of their origin (laboratory or clinically derived) produce more cyanide than their nonmucoid counterparts, (ii) AlgR regulates HCN production in P. aeruginosa, and (iii) P. aeruginosa CF isolates are more hypercyanogenic than nonmucoid laboratory strains. Taken together, cyanide production may be a relevant virulence factor in CF lung disease, the production of which is regulated, in part, by AlgR.  (+info)