Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle, but not in skeletal muscle and adipose tissue, have normal plasma triglyceride and high-density lipoprotein-cholesterol levels. (41/12667)

The tissue-specific expression of lipoprotein lipase (LPL) in adipose tissue (AT), skeletal muscle (SM), and cardiac muscle (CM) is rate-limiting for the uptake of triglyceride (TG)-derived free fatty acids and decisive in the regulation of energy balance and lipoprotein metabolism. To investigate the tissue-specific metabolic effects of LPL, three independent transgenic mouse lines were established that expressed a human LPL (hLPL) minigene predominantly in CM. Through cross-breeding with heterozygous LPL knockout mice, animals were generated that produced hLPL mRNA and enzyme activity in CM but lacked the enzyme in SM and AT because of the absence of the endogenous mouse LPL gene (L0-hLPL). LPL activity in CM and postheparin plasma of L0-hLPL mice was reduced by 34% and 60%, respectively, compared with control mice. This reduced LPL expression was sufficient to rescue LPL knockout mice from neonatal death. L0-hLPL animals developed normally with regard to body weight and body-mass composition. Plasma TG levels in L0-hLPL animals were increased up to 10-fold during the suckling period but normalized after weaning and decreased in adult animals. L0-hLPL mice had normal plasma high-density lipoprotein (HDL)-cholesterol levels, indicating that LPL expression in CM alone was sufficient to allow for normal HDL production. The absence of LPL in SM and AT did not cause detectable morphological or histopathological changes in these tissues. However, the lipid composition in AT and SM exhibited a marked decrease in polyunsaturated fatty acids. From this genetic model of LPL deficiency in SM and AT, it can be concluded that CM-specific LPL expression is a major determinant in the regulation of plasma TG and HDL-cholesterol levels.  (+info)

Specific gene expression in pancreatic beta-cells: cloning and characterization of differentially expressed genes. (42/12667)

Identification and characterization of genes expressed preferentially in pancreatic beta-cells will clarify the mechanisms involved in the specialized properties of these cells, as well as providing new markers of the development of type 1 diabetes. Despite major efforts, relatively few beta-cell-specific genes have been characterized. We applied representational difference analysis to identify genes expressed selectively in the pancreatic beta-cell line betaTC1 compared with the pancreatic alpha-cell line alphaTC1 and isolated 26 clones expressed at higher levels in the beta-cells than in the alpha-cells. DNA sequencing revealed that 14 corresponded to known genes (that is, present in GenBank). Only four of those genes had been shown previously to be expressed at higher levels in beta-cells (insulin, islet amyloid polypeptide, neuronatin, and protein kinase A regulatory subunit [RIalpha]). The known genes include transcription factors (STAT6) and mediators of signal transduction (guanylate cyclase). The remaining 12 genes are absent from the GenBank database or are present as expressed sequence tag (EST) sequences (4 clones). Some of the genes are expressed in a highly specific pattern-expression in betaTC1 and islet cells and in relatively few of the non-beta-cell types examined; others are expressed in most cell types tested. The identification of these differentially expressed genes may aid in attaining a clearer understanding of the mechanisms involved in beta-cell function and of the possible immunogens involved in development of type 1 diabetes.  (+info)

A model of whole-body protein turnover based on leucine kinetics in rodents. (43/12667)

The measurement of fractional synthesis rate is based on the following assumptions: amino acids for protein synthesis are supplied by an intracellular pool; amino acids from protein degradation are not recycled preferentially to protein synthesis; and proteins turn over at a homogeneous rate. To test these assumptions, a mechanistic, theoretical model of protein turnover for a nongrowing 26-g mouse was developed on the basis of data from the literature. The model consisted of three protein pools turning over at fast (102 micromol Leu, t1/2= 11.5 h), medium (212 micromol Leu, t1/2 = 16.6 h) or slow (536 micromol Leu, t1/2 = 71.5 h) rates and extracellular (1.69 micromol Leu), leucyl-tRNA (0.0226 micromol Leu) and intracellular (5.72 micromol Leu) amino acid pools that exchanged amino acids. The flow of amino acids from the protein pools to the leucyl-tRNA pool determined the amount of recycling. The flow of amino acids from the extracellular pool to aminoacyl tRNA determined the amount of channeling. Two flooding dose data sets were used to evaluate specific radioactivity changes predicted by the model. Predictions of specific radioactivities using flooding dose, pulse dose or continuous infusion methods indicated that the model can be a useful tool in estimating the rates of channeling and recycling. However, it was found that use of data from flooding dose experiments might cause inaccurate predictions of certain fluxes.  (+info)

The metamorphosis of a molecule: from soluble enzyme to the leukocyte receptor CD38. (44/12667)

Human CD38 is a 45-kDa type II membrane glycoprotein with an intricate pattern of expression in leukocytes, although evidence is accumulating of its quite widespread expression in cells of nonvascular origin. CD38 is a member of a nascent eukaryotic gene family encoding cytosolic and membrane-bound enzymes whose substrate is NAD, a coenzyme ubiquitously distributed in nature. Functionally, CD38 is an eclectic molecule with the ability not only to catalyze but also to signal, to mobilize calcium, and to adhere to itself, to hyaluronan, and to other ligands. Interaction with CD38 on various leukocyte subpopulations has profound though diverse consequences on their life-span, but these effects seem to be independent of the enzymatic activity of the molecule. CD38 challenges our expectations of a surface molecule and we must sift through its many guises to unmask its true nature.  (+info)

Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosis-inducing molecule Fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity. (45/12667)

Gene therapy using Fas ligand (FasL) for treatment of tumours and protection of transplant rejection is hampered because of the systemic toxicity of FasL. In the present study, recombinant replication-defective adenovirus vectors (RAds) encoding FasL under the control of either the neuronal-specific neuronal-specific enolase (NSE) promoter or the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter have been constructed. The cell type-specific expression of FasL in both neurons and glial cells in primary cultures, and in neuronal and glial cell lines is demonstrated. Furthermore, transgene expression driven by the neuronal and glial promoter was not detected in fibroblastic or epithelial cell lines. Expression of FasL driven by a major immediate early human cytomegalovirus promoter (MIEhCMV) was, however, achieved in all cells tested. As a final test of the stringency of transgene-specific expression, the RAds were injected directly into the bloodstream of mice. The RAds encoding FasL under the control of the non-cell type-specific MIEhCMV promoter induced acute generalized liver haemorrhage with hepatocyte apoptosis, while the RAds containing the NSE or GFAP promoter sequences were completely non-toxic. This demonstrates the specificity of transgene expression, enhanced safety during systemic administration, and tightly regulated control of transgene expression of highly cytotoxic gene products, encoded within transcriptionally targeted RAds.  (+info)

Suppression of breast cancer growth and metastasis by a serpin myoepithelium-derived serine proteinase inhibitor expressed in the mammary myoepithelial cells. (46/12667)

A serpin was identified in normal mammary gland by differential cDNA sequencing. In situ hybridization has detected this serpin exclusively in the myoepithelial cells on the normal and noninvasive mammary epithelial side of the basement membrane and thus was named myoepithelium-derived serine proteinase inhibitor (MEPI). No MEPI expression was detected in the malignant breast carcinomas. MEPI encodes a 405-aa precursor, including an 18-residue secretion signal with a calculated molecular mass of 46 kDa. The predicted sequence of the new protein shares 33% sequence identity and 58% sequence similarity to plasminogen activator inhibitor (PAI)-1 and PAI-2. To determine whether MEPI can modulate the in vivo growth and progression of human breast cancers, we transfected a full-length MEPI cDNA into human breast cancer cells and studied the orthotopic growth of MEPI-transfected vs. control clones in the mammary fat pad of athymic nude mice. Overexpression of MEPI inhibited the invasion of the cells in the in vitro invasion assay. When injected orthotopically into nude mice, the primary tumor volumes, axillary lymph node metastasis, and lung metastasis were significantly inhibited in MEPI-transfected clones as compared with controls. The expression of MEPI in myoepithelial cells may prevent breast cancer malignant progression leading to metastasis.  (+info)

Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. (47/12667)

Angiotensin produced systemically or locally in tissues such as the brain plays an important role in the regulation of blood pressure and in the development of hypertension. We have established transgenic rats [TGR(ASrAOGEN)] expressing an antisense RNA against angiotensinogen mRNA specifically in the brain. In these animals, the brain angiotensinogen level is reduced by more than 90% and the drinking response to intracerebroventricular renin infusions is decreased markedly compared with control rats. Blood pressure of transgenic rats is lowered by 8 mmHg (1 mmHg = 133 Pa) compared with control rats. Crossbreeding of TGR(ASrAOGEN) with a hypertensive transgenic rat strain exhibiting elevated angiotensin II levels in tissues results in a marked attenuation of the hypertensive phenotype. Moreover, TGR(ASrAOGEN) exhibit a diabetes insipidus-like syndrome producing an increased amount of urine with decreased osmolarity. The observed reduction in plasma vasopressin by 35% may mediate these phenotypes of TGR(ASrAOGEN). This new animal model presenting long-term and tissue-specific down-regulation of angiotensinogen corroborates the functional significance of local angiotensin production in the brain for the central regulation of blood pressure and for the pathogenesis of hypertension.  (+info)

Ectopic expression of prion protein (PrP) in T lymphocytes or hepatocytes of PrP knockout mice is insufficient to sustain prion replication. (48/12667)

The cellular form of the Prion protein (PrPC) is necessary for prion replication in mice. To determine whether it is also sufficient, we expressed PrP under the control of various cell- or tissue-specific regulatory elements in PrP knockout mice. The interferon regulatory factor-1 promoter/Emu enhancer led to high PrP levels in the spleen and low PrP levels in the brain. Following i.p. scrapie inoculation, high prion titers were found in the spleen but not in the brain at 2 weeks and 6 months, showing that the lymphoreticular system by itself is competent to replicate prions. PrP expression directed by the Lck promoter resulted in high PrP levels on T lymphocytes only but, surprisingly, did not allow prion replication in the thymus, spleen, or brain following i.p. inoculation. A third transgenic line, which expressed PrP in the liver under the control of the albumin promoter/enhancer-albeit at low levels-also failed to replicate prions. These results show that expression of PrP alone is not sufficient to sustain prion replication and suggest that additional components are needed.  (+info)