Continuous speech recognition for clinicians. (1/33)

The current generation of continuous speech recognition systems claims to offer high accuracy (greater than 95 percent) speech recognition at natural speech rates (150 words per minute) on low-cost (under $2000) platforms. This paper presents a state-of-the-technology summary, along with insights the authors have gained through testing one such product extensively and other products superficially. The authors have identified a number of issues that are important in managing accuracy and usability. First, for efficient recognition users must start with a dictionary containing the phonetic spellings of all words they anticipate using. The authors dictated 50 discharge summaries using one inexpensive internal medicine dictionary ($30) and found that they needed to add an additional 400 terms to get recognition rates of 98 percent. However, if they used either of two more expensive and extensive commercial medical vocabularies ($349 and $695), they did not need to add terms to get a 98 percent recognition rate. Second, users must speak clearly and continuously, distinctly pronouncing all syllables. Users must also correct errors as they occur, because accuracy improves with error correction by at least 5 percent over two weeks. Users may find it difficult to train the system to recognize certain terms, regardless of the amount of training, and appropriate substitutions must be created. For example, the authors had to substitute "twice a day" for "bid" when using the less expensive dictionary, but not when using the other two dictionaries. From trials they conducted in settings ranging from an emergency room to hospital wards and clinicians' offices, they learned that ambient noise has minimal effect. Finally, they found that a minimal "usable" hardware configuration (which keeps up with dictation) comprises a 300-MHz Pentium processor with 128 MB of RAM and a "speech quality" sound card (e.g., SoundBlaster, $99). Anything less powerful will result in the system lagging behind the speaking rate. The authors obtained 97 percent accuracy with just 30 minutes of training when using the latest edition of one of the speech recognition systems supplemented by a commercial medical dictionary. This technology has advanced considerably in recent years and is now a serious contender to replace some or all of the increasingly expensive alternative methods of dictation with human transcription.  (+info)

Model-based semantic dictionaries for medical language understanding. (2/33)

Semantic dictionaries are emerging as a major cornerstone towards achieving sound natural language understanding. Indeed, they constitute the main bridge between words and conceptual entities that reflect their meanings. Nowadays, more and more wide-coverage lexical dictionaries are electronically available in the public domain. However, associating a semantic content with lexical entries is not a straightforward task as it is subordinate to the existence of a fine-grained concept model of the treated domain. This paper presents the benefits and pitfalls in building and maintaining multilingual dictionaries, the semantics of which is directly established on an existing concept model. Concrete cases, handled through the GALEN-IN-USE project, illustrate the use of such semantic dictionaries for the analysis and generation of multilingual surgical procedures.  (+info)

A hospital-wide clinical findings dictionary based on an extension of the International Classification of Diseases (ICD). (3/33)

The use of a controlled vocabulary set in a hospital-wide clinical information system is of crucial importance for many departmental database systems to communicate and exchange information. In the absence of an internationally recognized clinical controlled vocabulary set, a new extension of the International statistical Classification of Diseases (ICD) is proposed. It expands the scope of the standard ICD beyond diagnosis and procedures to clinical terminology. In addition, the common Clinical Findings Dictionary (CFD) further records the definition of clinical entities. The construction of the vocabulary set and the CFD is incremental and manual. Tools have been implemented to facilitate the tasks of defining/maintaining/publishing dictionary versions. The design of database applications in the integrated clinical information system is driven by the CFD which is part of the Medical Questionnaire Designer tool. Several integrated clinical database applications in the field of diabetes and neuro-surgery have been developed at the HUG.  (+info)

From data to knowledge through concept-oriented terminologies: experience with the Medical Entities Dictionary. (4/33)

Knowledge representation involves enumeration of conceptual symbols and arrangement of these symbols into some meaningful structure. Medical knowledge representation has traditionally focused more on the structure than the symbols. Several significant efforts are under way, at local, national, and international levels, to address the representation of the symbols though the creation of high-quality terminologies that are themselves knowledge based. This paper reviews these efforts, including the Medical Entities Dictionary (MED) in use at Columbia University and the New York Presbyterian Hospital. A decade's experience with the MED is summarized to serve as a proof-of-concept that knowledge-based terminologies can support the use of coded patient data for a variety of knowledge-based activities, including the improved understanding of patient data, the access of information sources relevant to specific patient care problems, the application of expert systems directly to the care of patients, and the discovery of new medical knowledge. The terminological knowledge in the MED has also been used successfully to support clinical application development and maintenance, including that of the MED itself. On the basis of this experience, current efforts to create standard knowledge-based terminologies appear to be justified.  (+info)

A dictionary server for supplying context sensitive medical knowledge. (5/33)

The Giessen Data Dictionary Server (GDDS), developed at Giessen University Hospital, integrates clinical systems with on-line, context sensitive medical knowledge to help with making medical decisions. By "context" we mean the clinical information that is being presented at the moment the information need is occurring. The dictionary server makes use of a semantic network supported by a medical data dictionary to link terms from clinical applications to their proper information sources. It has been designed to analyze the network structure itself instead of knowing the layout of the semantic net in advance. This enables us to map appropriate information sources to various clinical applications, such as nursing documentation, drug prescription and cancer follow up systems. This paper describes the function of the dictionary server and shows how the knowledge stored in the semantic network is used in the dictionary service.  (+info)

Integration of nursing assessment concepts into the medical entities dictionary using the LOINC semantic structure as a terminology model. (6/33)

Recent investigations have tested the applicability of various terminology models for the representing nursing concepts including those related to nursing diagnoses, nursing interventions, and standardized nursing assessments as a prerequisite for building a reference terminology that supports the nursing domain. We used the semantic structure of Clinical LOINC (Logical Observations, Identifiers, Names, and Codes) as a reference terminology model to support the integration of standardized assessment terms from two nursing terminologies into the Medical Entities Dictionary (MED), the concept-oriented, metadata dictionary at New York Presbyterian Hospital. Although the LOINC semantic structure was used previously to represent laboratory terms in the MED, selected hierarchies and semantic slots required revisions in order to incorporate the nursing assessment concepts. This project was an initial step in integrating nursing assessment concepts into the MED in a manner consistent with evolving standards for reference terminology models. Moreover, the revisions provide the foundation for adding other types of standardized assessments to the MED.  (+info)

Evaluation of the DEFINDER system for fully automatic glossary construction. (7/33)

In this paper we present a quantitative and qualitative evaluation of DEFINDER, a rule-based system that mines consumer-oriented full text articles in order to extract definitions and the terms they define. The quantitative evaluation shows that in terms of precision and recall as measured against human performance, DEFINDER obtained 87% and 75% respectively, thereby revealing the incompleteness of existing resources and the ability of DEFINDER to address these gaps. Our basis for comparison is definitions from on-line dictionaries, including the UMLS Metathesaurus. Qualitative evaluation shows that the definitions extracted by our system are ranked higher in terms of user-centered criteria of usability and readability than are definitions from on-line specialized dictionaries. The output of DEFINDER can be used to enhance these dictionaries. DEFINDER output is being incorporated in a system to clarify technical terms for non-specialist users in understandable non-technical language.  (+info)

Integrating nursing diagnostic concepts into the medical entities dictionary using the ISO Reference Terminology Model for Nursing Diagnosis. (8/33)

OBJECTIVE: The purposes of the study were (1) to evaluate the usefulness of the International Standards Organization (ISO) Reference Terminology Model for Nursing Diagnoses as a terminology model for defining nursing diagnostic concepts in the Medical Entities Dictionary (MED) and (2) to create the additional hierarchical structures required for integration of nursing diagnostic concepts into the MED. DESIGN AND MEASUREMENTS: The authors dissected nursing diagnostic terms from two source terminologies (Home Health Care Classification and the Omaha System) into the semantic categories of the ISO model. Consistent with the ISO model, they selected Focus and Judgment as required semantic categories for creating intensional definitions of nursing diagnostic concepts in the MED. Because the MED does not include Focus and Judgment hierarchies, the authors developed them to define the nursing diagnostic concepts. RESULTS: The ISO model was sufficient for dissecting the source terminologies into atomic terms. The authors identified 162 unique focus concepts from the 266 nursing diagnosis terms for inclusion in the Focus hierarchy. For the Judgment hierarchy, the authors precoordinated Judgment and Potentiality instead of using Potentiality as a qualifier of Judgment as in the ISO model. Impairment and Alteration were the most frequently occurring judgments. CONCLUSIONS: Nursing care represents a large proportion of health care activities; thus, it is vital that terms used by nurses are integrated into concept-oriented terminologies that provide broad coverage for the domain of health care. This study supports the utility of the ISO Reference Terminology Model for Nursing Diagnoses as a facilitator for the integration process.  (+info)