Essential fatty acid requirements of vegetarians in pregnancy, lactation, and infancy. (17/2038)

Long-chain polyunsaturated fatty acids (LCPUFAs) derived from linoleic (18:2n-6) and alpha-linolenic (18:3n-3) acids are required for the normal development of the retina and central nervous system, but the extent to which they can be synthesized from the parent fatty acids is debated. Consuming LCPUFAs markedly increases their proportions in tissue lipids compared with their parent fatty acids. Thus, it has been argued that LCPUFAs must be supplied in the diet. LCPUFAs are generally absent from plant foods, thus it is important find out how essential fatty acid requirements are met by vegetarians. A developing fetus obtains LCPUFAs via selective uptake from its mother's plasma and LCPUFAs are present in the breast milk of vegetarians. There is no evidence that the capacity to synthesize LCPUFAs is limited in vegetarians. However, there are greater proportions of n-6 LCPUFAs and lower proportions of n-3 LCPUFAs in vegetarians compared with omnivores. This difference is probably a consequence of the selection of foods by vegetarians with high amounts of linoleic acid. Although lower concentrations of docosahexaenoic acid (22:6n-3; DHA) have been observed in blood and artery phospholipids of infants of vegetarians, it is uncertain whether their brain lipids contain lower proportions of DHA than do those of infants of omnivores. On the basis of experiments in primates that showed altered visual function with a high ratio of linoleic acid to alpha-linolenic acid, it would be prudent to recommend diets with a ratio between 4:1 and 10:1 in vegetarians and that excessive intakes of linoleic acid be avoided.  (+info)

Essential fatty acids in health and chronic disease. (18/2038)

Human beings evolved consuming a diet that contained about equal amounts of n-3 and n-6 essential fatty acids. Over the past 100-150 y there has been an enormous increase in the consumption of n-6 fatty acids due to the increased intake of vegetable oils from corn, sunflower seeds, safflower seeds, cottonseed, and soybeans. Today, in Western diets, the ratio of n-6 to n-3 fatty acids ranges from approximately 20-30:1 instead of the traditional range of 1-2:1. Studies indicate that a high intake of n-6 fatty acids shifts the physiologic state to one that is prothrombotic and proaggregatory, characterized by increases in blood viscosity, vasospasm, and vasoconstriction and decreases in bleeding time. n-3 Fatty acids, however, have antiinflammatory, antithrombotic, antiarrhythmic, hypolipidemic, and vasodilatory properties. These beneficial effects of n-3 fatty acids have been shown in the secondary prevention of coronary heart disease, hypertension, type 2 diabetes, and, in some patients with renal disease, rheumatoid arthritis, ulcerative colitis, Crohn disease, and chronic obstructive pulmonary disease. Most of the studies were carried out with fish oils [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)]. However, alpha-linolenic acid, found in green leafy vegetables, flaxseed, rapeseed, and walnuts, desaturates and elongates in the human body to EPA and DHA and by itself may have beneficial effects in health and in the control of chronic diseases.  (+info)

Both (n-3) and (n-6) fatty acids stimulate wound healing in the rat intestinal epithelial cell line, IEC-6. (19/2038)

The control of proliferation and epithelial restitution are processes that are poorly understood. The effects of (n-3), (n-6) and trans fatty acids on proliferation of subconfluent IEC-6 cultures and restitution of wounded IEC-6 monolayers were investigated. Incorporation of supplemented fatty acids into cellular phospholipid was also assessed. Sulforhodamine B protein dye binding assay was utilized to assess the proliferative effects of fatty acids on growth of IEC-6 cultures. Incorporation of supplemental fatty acids into cellular phospholipid was examined by thin-layer chromatography combined with gas chromatography. The modulation of epithelial restitution was examined by razor blade wounding confluent IEC-6 monolayers grown in media supplemented with various fatty acids. Inhibition of eicosanoid synthesis by indomethacin during the wounding assay was also assessed. Both (n-3) and (n-6) fatty acids significantly inhibited growth of this intestinal epithelial cell model at concentrations above 125 micromol/L. The trans fatty acid, linoelaidate 18:2(n-6)trans, inhibited growth of IEC-6 cells at concentrations above 250 micromol/L. Another trans fatty acid, elaidate 18:1(n-9)trans, was well-tolerated at concentrations as high as 500 micromol/L. Eicosapentanoic 20:5(n-3), linoleic 18:2(n-6), alpha-linolenic 18:3(n-3), gamma-linolenic 18:3(n-6) and arachidonic 20:4(n-6) acids all significantly enhanced cellular migration in the IEC-6 model of wound healing. Eicosapentanoate, linoleate, alpha-linolenate, gamma-linolenate and arachidonate are all capable of improving reconstitution of epithelial integrity following mucosal injury. Inhibition of eicosanoid synthesis reduced the enhancement of restitution by n-6 fatty acids back to control levels.  (+info)

Increased dietary triacylglycerol markedly enhances the ability of isolated rabbit enterocytes to secrete chylomicrons: an effect related to dietary fatty acid composition. (20/2038)

Dietary fats are efficiently absorbed in the small intestine and transported into the blood via the lymph as chylomicrons, despite enormous variations in the amount and composition of the dietary lipid. The aim of the present study was to investigate how enterocytes respond to increased dietary fats of different composition. Rabbits were fed a low fat chow diet, and chow supplemented with sunflower oil (high n-6 polyunsaturated fatty acids), fish oil (high n-3 polyunsaturated fatty acids), or an oil mixture of a composition similar to that of the typical western diet. Feeding fat for 2 weeks markedly stimulated the ability of the isolated enterocytes to synthesize and secrete apolipoprotein B48, triacylglycerol, and cholesteryl ester (up to 18-, 50-, and 80-fold, respectively) in particles of chylomicron density. The magnitude of stimulation was sunflower oil > western diet lipid > fish oil. Single doses of lipid given 18 h prior to isolation of enterocytes stimulated chylomicron secretion by only 10% of that observed after 2 weeks of dietary supplementation. Enterocytes are replaced rapidly (half-life 1-2 days) by cells which move from the crypts to the tips of the villi, where absorption of nutrients takes place. Our observations suggest that dietary lipids modulate the function of enterocytes as they move from the crypts, so that the cells are 'turned-on' to lipid absorption. The results also show that diets of different fatty acid composition vary in their effects.  (+info)

Dietary fish as a major component of a weight-loss diet: effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. (21/2038)

BACKGROUND: Obesity in hypertensive patients is associated with dyslipidemia and insulin resistance, both of which are improved by weight control. n-3 Fatty acids have diverse effects on mechanisms underlying atherosclerosis, including a decrease in serum triacylglycerols and an increase in HDL(2) cholesterol. OBJECTIVE: The objective was to examine whether dietary fish enhances the effects of weight loss on serum lipids, glucose, and insulin in 69 overweight, treated hypertensive patients. DESIGN: Overweight patients being treated for hypertension were randomly assigned to either a daily fish meal (3.65 g n-3 fatty acids), a weight-loss regimen, the 2 regimens combined, or a control group for 16 wk. RESULTS: Sixty-three subjects completed the study. Weight decreased by a mean (+/-SEM) of 5.6 +/- 0.8 kg with energy restriction. Weight loss decreased fasting insulin (P = 0.003) and the area under the curve for insulin (P = 0.003) and glucose (P = 0.047) during an oral-glucose-tolerance test. The greatest decrease occurred in the fish + weight-loss group. There was no independent effect of fish on glucose or insulin. Fish increased HDL(2) cholesterol (P = 0.004) and decreased HDL(3) cholesterol (P = 0.026) without altering total, LDL, or HDL cholesterol. Weight loss had no effect on these variables. Fasting triacylglycerols fell significantly with fish consumption (29%) and weight loss (26%). The fish + weight-loss group showed the greatest improvement in lipids: triacylglycerols decreased by 38% (P < 0.001) and HDL(2) cholesterol increased by 24% (P = 0.04) compared with the control group. CONCLUSIONS: Incorporating a daily fish meal into a weight-loss regimen was more effective than either measure alone at improving glucose-insulin metabolism and dyslipidemia. Cardiovascular risk is likely to be substantially reduced in overweight hypertensive patients with a weight-loss program incorporating fish meals rich in n-3 fatty acids.  (+info)

Dietary docosahexaenoic acid-enriched phospholipids normalize urinary melatonin excretion in adult (n-3) polyunsaturated fatty acid-deficient rats. (22/2038)

Melatonin (MEL) plays an essential role in physiologic functions associated with darkness. We examined the effects of docosahexaenoic acid (DHA)-enriched phospholipids from pig brains (BPL) or hen eggs (EPL), as sources of DHA, on lipid FA composition of pineal membranes and daytime and nighttime concentrations of 6-sulfatoxymelatonin (aMT6) in adult male control and (n-3)-deficient rats fed BPL and EPL diets for 5 wk. In two experiments, at 3 wk of age, rats were divided into subgroups and fed semipurified diets containing either peanut oil [(n-3)-deficient group] or peanut plus rapeseed oil (control group) and two dietary formulas containing either 3.5 g/100 g diet of BPL (Experiment 1) or 5.0 g/100 g diet of EPL (Experiment 2). BPL and EPL diets provided approximately 200 mg of DHA/100 g diet. During the daytime, aMT6 concentrations were not significantly different among groups. Conversely, the (n-3)-deficient rats had significantly lower nighttime aMT6 concentrations than the control rats. BPL and EPL did not affect urinary nighttime aMT6 concentration in the control group, whereas (n-3)-deficient + BPL or EPL groups exhibited significantly higher nighttime aMT6 concentrations than the (n-3)-deficient group (76 and 110%, respectively). The level of DHA was significantly higher in the pineal glands of control rats than in (n-3)-deficient rats. In rats fed EPL and BPL, the level of DHA reached a plateau, between 10 and 11 mg/100 mg total fatty acids in control + BPL or EPL and (n-3)-deficient + BPL or EPL groups. These findings suggest that new DHA-enriched formulas may be used as an efficient alternative source of (n-3) polyunsaturated fatty acids to normalize MEL secretion.  (+info)

Inhibition of cardiac sodium currents in adult rat myocytes by n-3 polyunsaturated fatty acids. (23/2038)

1. The acute effects of n-3 polyunsaturated fatty acids were determined on whole-cell sodium currents recorded in isolated adult rat ventricular myocytes using patch clamp techniques. 2. The n-3 polyunsaturated fatty acids docosahexaenoic acid (22:6, n-3), eicosapentaenoic acid (20:5, n-3) and alpha-linolenic acid (18:3, n-3) dose-dependently blocked the whole-cell sodium currents evoked by a voltage step to -30 mV from a holding potential of -90 mV with EC50 values of 6.0 +/- 1.2, 16.2 +/- 1.3 and 26.6 +/- 1.3 microM, respectively. 3. Docosahexaenoic acid, eicosapentaenoic acid and alpha-linolenic acid at 25 microM shifted the voltage dependence of activation of the sodium current to more positive potentials by 9.2 +/- 2.0, 10.1 +/- 1.1 and 8.3 +/- 0.9 mV, respectively, and shifted the voltage dependence of inactivation to more negative potentials by 22.3 +/- 0.9, 17.1 +/- 3.7 and 20.5 +/- 1.0 mV, respectively. In addition, the membrane fluidising agent benzyl alcohol (10 mM) shifted the voltage dependence of activation to more positive potentials by 7.8 +/- 2.5 mV and shifted the voltage dependence of inactivation to more negative potentials (by -24.6 +/- 3.6 mV). 4. Linoleic acid (18:2, n-6), oleic acid (18:1, n-9) and stearic acid (18:0) were either ineffective or much less potent at blocking the sodium current or changing the voltage dependence of the sodium current compared with the n-3 fatty acids tested. 5. Docosahexaenoic acid, eicosapentaenoic acid, alpha-linolenic acid and benzyl alcohol significantly increased sarcolemmal membrane fluidity as measured by fluorescence anisotropy (steady-state, rss, values of 0.199 +/- 0. 004, 0.204 +/- 0.006, 0.213 +/- 0.005 and 0.214 +/- 0.009, respectively, compared with 0.239 +/- 0.002 for control), whereas stearic, oleic and linoleic acids did not alter fluidity (the rss was not significantly different from control). 6. The potency of the n-3 fatty acids docosahexaenoic acid, eicosapentaenoic acid and alpha-linolenic acid to block cardiac sodium currents is correlated with their ability to produce an increase in membrane fluidity.  (+info)

Effect of n-3 fatty acids on the composition and binding properties of lipoproteins in hypertriglyceridemic patients. (24/2038)

BACKGROUND: Treatment of hyperlipidemic patients with fish oil results in an increase in plasma LDL cholesterol despite a marked decrease in the LDL precursor, VLDL. OBJECTIVE: We studied the relation between VLDL composition and LDL concentrations. DESIGN: Fourteen hypertriglyceridemic patients were treated with encapsulated fish oil (containing 1.45 g eicosapentaenoic acid and 1. 55 g docosahexaenoic acid/d) for 4 wk. Venous blood samples were collected before and after treatment. Eleven normolipidemic subjects served as a control group. RESULTS: Fish oil effectively lowered plasma lipid and apolipoprotein (apo) E concentrations in the hypertriglyceridemic patients, whereas apo B concentrations increased. The lipid and apolipoprotein content of VLDL decreased, whereas LDL cholesterol and LDL apo B increased. Fractionation of VLDL by heparin-affinity chromatography showed that before treatment hypertriglyceridemic patients had more VLDL in the 0.05-mol NaCl/L subfraction and less in the 0.20-mol/L subfraction than did control subjects (P < 0.05), whereas the subfraction distribution pattern was normalized after fish-oil treatment. Nevertheless, plasma concentrations of the 0.05-mol NaCl/L subfraction were decreased and those of the 0.20-mol/L subfraction were increased in hypertriglyceridemic patients after fish-oil treatment (P < 0.05). Fish-oil treatment both enhanced VLDL binding and lowered LDL binding to fibroblasts. CONCLUSION: Treatment of hypertriglyceridemic patients with fish oil caused differential effects on VLDL subfractions and decreased LDL binding to fibroblast receptors, which may have contributed to the paradoxical increase in LDL-cholesterol concentrations.  (+info)