Clinical importance of c-Met protein expression in high grade astrocytic tumors. (1/414)

The clinical importance of the expression of c-Met protein, the receptor of hepatocyte growth factor/scatter factor, was evaluated in neuroepithelial tissue tumors. c-Met immunohistochemistry was performed using the streptavidin-biotin-peroxidase complex method with anti-c-Met polyclonal antibody. Specimens were classified as c-Met negative (< 30%) or c-Met positive (> or = 30%) according to the proportion of immunopositive cells under microscopic examination. All c-Met-positive cases occurred in high grade astrocytic tumors, not in other neuroepithelial tissue tumors. Most c-Met-positive astrocytic tumors were classified histologically as high grade tumors. Epidermal growth factor-receptor (EGFR) and MIB-1 immunohistochemistry were also performed for high grade astrocytic tumors. Survival analysis was performed for patients with these tumors with variables including c-Met positivity, EGFR positivity, and MIB-1 labeling index. Positivity of c-Met was independent from EGFR positivity and MIB-1 labeling index, and the c-Met-positive group showed a significant shorter survival (p < 0.05). c-Met immunopositivity may be a parameter of biological aggressiveness in high grade astrocytic tumors. Examination of c-Met expression in astrocytic tumors provides significant clinical information, especially as a prognostic factor.  (+info)

Expression of green fluorescent protein in oligodendrocytes in a time- and level-controllable fashion with a tetracycline-regulated system. (2/414)

Developments in transgenic technology have greatly enhanced our ability to understand the functions of various genes in animal models and relevant human diseases. The tetracycline (tet)-regulated transactivation system for inducing gene expression allowed us to control the expression of exogenous genes in a temporal and quantitative way. The ability to manipulate a cell-specific promoter enabled us to express one particular protein in a single type of cell. The combination of a tetracycline system and a tissue-specific promoter has led us to the development of an innovative gene expression system, which is able to express genes in a cell type-specific and time- and level-controllable fashion. An oligodendrocyte-specific myelin basic protein (MBP) gene promoter controls the reversed tet-inducible transactivator. The green fluorescent protein (GFP) gene was placed under the control of the human cytomegalovirus (CMV) basic promoter in tandem with seven tet-responsive elements (TRE), binding sites for the activated transactivator. Upon the addition of doxycycline (DOX, a tetracycline derivative), tet transactivators became activated and bound to one or more TRE, leading to the activation of the CMV promoter and the expression of GFP in oligodendrocytes. We have successfully expressed GFP and luciferase at high levels in oligodendrocytes in a time- and dose-dependent fashion. In the absence of DOX, there was almost no GFP expression in oligodendroglial cultures. Graded levels of GFP expression were observed after induction with DOX (0.5 to 12.5 microg/ml). Our data indicate that this inducible gene expression system is useful for the study of gene function in vivo and for the development of transgenic animal models relevant to human diseases such as multiple sclerosis.  (+info)

Irinotecan therapy in adults with recurrent or progressive malignant glioma. (3/414)

PURPOSE: To determine the activity, toxicity, and pharmacokinetics of irinotecan (CPT-11, Camptosar; Pharmacia & Upjohn, Kalamazoo, MI) in the treatment of adults with progressive, persistent, or recurrent malignant glioma. PATIENTS AND METHODS: Patients with progressive or recurrent malignant gliomas were enrolled onto this study between October 1996 and August 1997. CPT-11 was given as a 90-minute intravenous (i.v.) infusion at a dose of 125 mg/m2 once weekly for 4 weeks followed by a 2-week rest, which comprised one course. Plasma concentrations of CPT-11 and its metabolites, SN-38 and SN-38 glucuronide (SN-38G), were determined in a subset of patients. RESULTS: All 60 patients who enrolled (36 males and 24 females) were treated with CPT-11 and all were assessable for toxicity, response, and survival. Pharmacokinetic data were available in 32 patients. Nine patients (15%; 95% confidence interval, 6% to 24%) had a confirmed partial response, and 33 patients (55%) achieved stable disease lasting more than two courses (12 weeks). Toxicity observed during the study was limited to infrequent neutropenia, nausea, vomiting, and diarrhea. CPT-11, SN-38, and SN-38G area under the plasma concentration-time curves through infinite time values in these patients were approximately 40%, 25%, and 25%, respectively, of those determined previously in patients with metastatic colorectal cancer not receiving antiepileptics or chronic dexamethasone treatment. CONCLUSION: Response results document that CPT-11, given with a standard starting dose and treatment schedule, has activity in patients with recurrent malignant glioma. However, the low incidence of severe toxicity and low plasma concentrations of CPT-11 and SN-38 achieved in this patient population suggest that concurrent treatment with anticonvulsants and dexamethasone enhances drug clearance.  (+info)

Locoregional regulatory peptide receptor targeting with the diffusible somatostatin analogue 90Y-labeled DOTA0-D-Phe1-Tyr3-octreotide (DOTATOC): a pilot study in human gliomas. (4/414)

Human gliomas, especially of low-grade type, have been shown to express high-affinity somatostatin receptor type 2 (J-C. Reubi et al., Am. J. Pathol, 134: 337-344, 1989). We enrolled seven low-grade and four anaplastic glioma patients in a pilot study using the diffusible peptidic vector 90Y-labeled DOTA0-D-Phe1-Tyr3-octreotide (DOTATOC) for receptor targeting. The radiopharmakon was locoregionally injected into a stereotactically inserted Port-a-cath. DOTATOC competes specifically with somatostatin binding to somatostatin receptor type 2 in the low nanomolar range as shown by a displacement curve of 125I-[Tyr3]-octreotide in tumor tissue sections. Diagnostic (111)In-labeled DOTATOC-scintigraphy following local injection displayed homogeneous to nodular intratumoral vector distribution. The cumulative activity of regionally injected peptide-bound 90Y amounted to 370-3300 MBq, which is equivalent to an effective dose range between 60 +/- 15 and 550 +/- 110 Gy. Activity was injected in one to four fractions according to tumor volumes; 1110 MBq of 90Y-labeled DOTATOC was the maximum activity per single injection. We obtained six disease stabilizations and shrinking of a cystic low-grade astrocytoma component. The only toxicity observed was secondary perifocal edema. The activity:dose ratio (MBq:Gy) represents a measure for the stability of peptide retention in receptor-positive tissue and might predict the clinical course. We conclude that SR-positive human gliomas, especially of low-grade type, can be successfully targeted by intratumoral injection of the metabolically stable small regulatory peptide DOTATOC.  (+info)

Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. (5/414)

Macrophages are key participants in angiogenesis. In this study on human brain tumors, we first investigated whether macrophage infiltration is associated with angiogenesis and malignant histological appearance. Immunostaining of macrophages and small vessels in resected glioma specimens indicated that numbers of infiltrating macrophages and small vessel density were higher in glioblastomas than in astrocytomas or anaplastic astrocytomas. Macrophage infiltration was closely correlated with vascular density in human gliomas. Heme oxygenase-1 (HO-1), which is the rate-limiting enzyme in heme catabolism, was also associated with activated macrophages. Expression of mRNA encoding HO-1 was correlated with macrophage infiltration and vascular density in human glioma samples. Infiltrating macrophages were positively stained with anti-HO-1 antibody by immunohistochemical analysis, and in situ hybridization for HO-1 indicated that HO-1 was expressed in infiltrating macrophages in gliomas. HO-1 gene may be a useful marker for macrophage infiltration as well as neovascularization in human gliomas.  (+info)

Familial gliomas : a case report. (6/414)

Two non-twin brothers were found to have intracranial malignant neoplasms. The age of presentation was third and fourth decade but the onset was simultaneous, at the same time. Diagnosis in each of them was made by computed tomography and confirmed by histopathology. Elder among them had cellular ependymoma and the younger had oligodendroglioma. Both the brothers received radiotherapy post operatively and were surviving asymptomatically without any neurological deficit, leading active life as police constable, 12 months after surgical treatment.  (+info)

Molecular genetic aspects of oligodendrogliomas including analysis by comparative genomic hybridization. (7/414)

Oligodendroglial neoplasms are a subgroup of gliomas with distinctive morphological characteristics. In the present study we have evaluated a series of these tumors to define their molecular profiles and to determine whether there is a relationship between molecular genetic parameters and histological pattern in this tumor type. Loss of heterozygosity (LOH) for 1p and 19q was seen in 17/23 (74%) well-differentiated oligodendrogliomas, in 18/23 (83%) anaplastic oligodendrogliomas, and in 3/8 (38%) oligoastrocytomas grades II and III. LOH for 17p and/or mutations of the TP53 gene occurred in 14 of these 55 tumors. Only one of the 14 cases with 17p LOH/TP53 gene mutation also had LOH for 1p and 19q, and significant astrocytic elements were seen histologically in the majority of these 14 tumors. LOH for 9p and/or deletion of the CDKN2A gene occurred in 15 of these 55 tumors, and 11 of these cases were among the 24 (42%) anaplastic oligodendrogliomas. Comparative genomic hybridization (CGH) identified the majority of cases with 1p and 19q loss and, in addition, showed frequent loss of chromosomes 4, 14, 15, and 18. These findings demonstrate that oligodendroglial neoplasms usually have loss of 1p and 19q whereas astrocytomas of the progressive type frequently contain mutations of the TP53 gene, and that 9p loss and CDKN2A deletions are associated with progression from well-differentiated to anaplastic oligodendrogliomas.  (+info)

Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. (8/414)

Allelic alterations of chromosomes 1 and 19 are frequent events in human diffuse gliomas and have recently proven to be strong predictors of chemotherapeutic response and prolonged survival in oligodendrogliomas (Cairncross et al., 1998; Smith et al., submitted). Using 115 human diffuse gliomas, we localized regions of common allelic loss on chromosomes 1 and 19 and assessed the association of these deletion intervals with glioma histological subtypes. Further, we evaluated the capacity of multiple modalities to detect these alterations, including loss of heterozygosity (LOH), fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH). The correlation coefficients for detection of 1p and 19q alterations, respectively, between modalities were: 0.98 and 0.87 for LOH and FISH, 0.79 and 0.60 for LOH and CGH, and 0.79 and 0.53 for FISH and CGH. Minimal deletion regions were defined on 19q13.3 (D19S412-D19S596) and 1p (D1S468-D1S1612). Loss of the 1p36 region was found in 18% of astrocytomas (10/55) and in 73% (24/33) of oligodendrogliomas (P < 0.0001), and loss of the 19q13.3 region was found in 38% (21/55) of astrocytomas and 73% (24/33) of oligodendrogliomas (P = 0.0017). Loss of both regions was found in 11% (6/55) of astrocytomas and in 64% (21/33) of oligodendrogliomas (P < 0.0001). All gliomas with LOH on either 1p or 19q demonstrated loss of the corresponding FISH probe, 1p36 or 19q13.3, suggesting not only locations of putative tumor suppressor genes, but also a simple assay for assessment of 1p and 19q alterations as diagnostic and prognostic markers.  (+info)