Expression patterns of neurturin and its receptor components in developing and degenerative mouse retina. (1/1798)

PURPOSE: Neurturin (NTN) and its receptor components (GFRalpha2 and Ret) play an important role in the survival of different populations of neurons in the central and peripheral nervous systems. To gain insight into their possible functions throughout normal retinal development and during retinal neuronal apoptosis, the retinal distribution of expression of NTN and GFRalpha2 mRNAs and Ret protein were compared in control and retinal degeneration (rd) mice. METHODS: Eyes from control and rd animals were fixed in paraformaldehyde before sectioning. For in situ hybridization, retinal sections were hybridized with 35S-radiolabeled sense and antisense riboprobes for murine NTN and GFRalpha2 and were autoradiographed. Ret localization was detected by immunofluorescence. RESULTS: Neurturin mRNA expression was modulated through normal postnatal retinal development and was localized primarily to the inner retina and photoreceptor outer segments. GFRalpha2 mRNA displayed a diffuse developmental pattern of expression, but in the mature normal retina, NTN and GFRalpha2 mRNAs were more closely colocalized. Ret protein was localized particularly at the outer segments of photoreceptors, inner retina, and ganglion cell layers, but there were no prominent differences among genotypes. Increased NTN mRNA expression was detected in the retinal pigment epithelium and neural retina in concert with photoreceptor degeneration in rd mouse. In contrast, the level of GFRalpha2 mRNA was lower in rd compared with that in normal retina. CONCLUSIONS: These results suggest that NTN and its receptor are involved in retinal postnatal development and maintenance and that alterations in their transcription patterns are associated with inherited retinal degeneration.  (+info)

Riluzole improves functional recovery after ischemia in the rat retina. (2/1798)

PURPOSE: Retinal ischemia leads to neuronal death. The effects of riluzole, a drug that protects against the deleterious effect of cerebral ischemia by acting on several types of ion channels and blocking glutamatergic neurotransmission, were investigated in a rat model of retinal ischemic injury. METHODS: Retinal ischemia was induced by increasing intraocular pressure above systolic blood pressure for 30 minutes. Electroretinograms were recorded before ischemia and at different periods of reperfusion. Riluzole was injected or topically applied to the eye before or after ischemia and twice daily during the reperfusion period. Retinas were harvested for histopathology (toluidine blue and silver-impregnation stainings, Tdt-dUTP terminal nick-end labeling [TUNEL] method) and immunohistochemistry for cytoskeletal glial fibrillary acid protein and c-jun NH2-terminal kinase (p-JNK). RESULTS: Ischemia for 30 minutes caused a reduction of a- and b-waves of the electroretinogram. Systemic and topical treatments with riluzole significantly enhanced the recovery of the reduced a- and b-waves after defined reperfusion times. Riluzole also prevented or attenuated ischemia-induced retinal cell death (necrosis and apoptosis) and reduced the activation of p-JNK, c-jun phosphorylation, and the increase of cytoskeletal proteins induced by ischemic injury. CONCLUSIONS: Riluzole acted in vivo as a potent neuroprotective agent against pressure-induced ischemia. Therefore, riluzole may be a major drug for use in protection against retinal injury.  (+info)

Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats. (3/1798)

We developed an experimental approach with genetically engineered and encapsulated mouse NIH 3T3 fibroblasts to delay the progressive degeneration of photoreceptor cells in dark-eyed Royal College of Surgeons rats. These xenogeneic fibroblasts can survive in 1. 5-mm-long microcapsules made of the biocompatible polymer AN69 for at least 90 days under in vitro and in vivo conditions because of their stable transfection with the gene for the 18-kDa form of the human basic fibroblast growth factor (hFGF-2). Furthermore, when transferred surgically into the vitreous cavity of 21-day-old Royal College of Surgeons rats, the microencapsulated hFGF-2-secreting fibroblasts provoked a local delay of photoreceptor cell degeneration, as seen at 45 days and 90 days after transplantation. This effect was limited to 2.08 mm2 (45 days) and 0.95 mm2 (90 days) of the retinal surface. In both untreated eyes and control globes with encapsulated hFGF-2-deficient fibroblasts, the rescued area (of at most 0.08 mm2) was significantly smaller at both time points. Although, in a few ocular globes, surgical trauma induced a reorganization of the retinal cytoarchitecture, neither microcapsule rejection nor hFGF-2-mediated tumor formation were detected in any treated eyes. These findings indicate that encapsulated fibroblasts secreting hFGF-2 or perhaps other agents can be applied as potential therapeutic tools to treat retinal dystrophies.  (+info)

Increased susceptibility to constant light in nr and pcd mice with inherited retinal degenerations. (4/1798)

PURPOSE: To determine whether the degenerating photoreceptors in nervous (nr/nr) and Purkinje cell degeneration (pcd/pcd) mutant mice are more susceptible to the damaging effects of constant light than those in age-matched normal mice. METHODS: Beginning at two ages for each mutant, albino nr/nr and pcd/pcd mice were placed into constant fluorescent light at an illuminance of 115 foot-candles to 130 foot-candles for a period of 1 week. Age-matched (usually littermate) normal (+/-) mice were exposed at the same time. The degree of photoreceptor cell loss was quantified histologically by obtaining a mean outer nuclear layer thickness for each animal. The light-exposed mice were compared with age-matched mutant and normal mice that were maintained in cyclic light. RESULTS: The homozygous mutants at each age showed a significantly greater loss of photoreceptor cells caused by constant light exposure than did the normal +/- mice in the same period of light exposure. The nr/nr and pcd/pcd mutants lost two to three times the number of photoreceptor cells than did the +/- mice during the constant light exposure. CONCLUSIONS: It has long been thought that excessive light may be harmful to patients with inherited or age-related photoreceptor degenerations. The present data add to other experimental evidence suggesting that photoreceptors already undergoing inherited or other forms of degeneration may be particularly susceptible to the damaging effects of excessive light.  (+info)

Three widespread founder mutations contribute to high incidence of X-linked juvenile retinoschisis in Finland. (5/1798)

X-linked juvenile retinoschisis (RS) is a recessively inherited disorder causing progressive vitreoretinal degeneration in males. The gene defective in retinoschisis, XLRS1, has recently been identified and characterised. This gene consists of six exons encoding a protein with a putative role in cell-cell adhesion and phospholipid binding. Juvenile retinoschisis has been actively studied in Finland over the past 30 years, with over 300 diagnosed RS patients. Based on genealogical studies, approximately 70% of the Finnish RS patients originate from Western Finland and 20% from Northern Finland. In this study, one third of the known Finnish RS patients were screened for mutations of the XLRS1 gene. Haplotype analysis, using nine microsatellite markers spanning 1 cM in Xp22.2, suggested the segregation of eight different mutations in these families. To identify mutations, the six exons were amplified by PCR and analysed by single strand conformation analysis, followed by direct sequencing of the PCR products. We identified seven distinct missense mutations, all in exons 4 and 6. The mutations in exon 4, 214G > A and 221G > T, are accountable for RS in Western Finland. A third mutation in exon 4, 325G > C, gives rise to RS in Northern Finland. These three founder mutations are the predominant cause of RS in Finland and their existence explains the high incidence of the disease. The identification of mutations common in genetically isolated populations, such as Finland, allows the diagnosis of patients with an atypical RS phenotype and enables nationwide carrier testing and improved genetic counselling.  (+info)

Functional protection of photoreceptors from light-induced damage by dimethylthiourea and Ginkgo biloba extract. (6/1798)

PURPOSE: To investigate the functional protective effect of a synthetic (dimethylthiourea, DMTU) and a natural antioxidant (Ginkgo biloba extract, EGb 761) against light-induced retinal degeneration. METHODS: Wistar rats were exposed for 24 hours to 1700-lux light after treatment with DMTU or EGb 761. Electroretinograms were recorded before and on day (D)1, D3, D8, D15, D22, and D29 after light exposure. The b-wave amplitude was plotted against log L (ganzfeld luminance), providing the b-wave sensitivity curve. The Naka-Rushton function fitted to the sensitivity curve enabled derivation of the parameters Bmax (saturated amplitude) and K (luminance-inducing Bmax/2). In addition, rats from each group were killed for retinal morphometric analyses. RESULTS: In the untreated group, light exposure caused collapse of the b-wave sensitivity curves. Bmax was reduced by 51% at D1 without subsequent recovery. K increased temporarily, reverting to normal values 8 days later. The outer nuclear layer thicknesses decreased markedly in the superior retina. In the treated groups, light exposure had a weaker effect on sensitivity curves. The values of Bmax were not significantly different from those in the unexposed-untreated group, although K increased temporarily. Retinal morphometry was preserved. CONCLUSIONS: Dimethylthiourea and EGb 761 afford functional protection against light-induced retinal damage.  (+info)

Evaluation of the APOH gene as a positional candidate for prcd in dogs. (7/1798)

PURPOSE: Progressive rod-cone degeneration (prcd) is an autosomal recessive retinal degeneration of dogs characterized by abnormalities in lipid metabolism. It has recently been mapped to the centromeric region of canine chromosome 9, homologous to human 17q, which contains the apolipoprotein H (apoH, protein; APOH, gene) gene involved in lipid metabolism and regulation of triglycerides. The present study was undertaken to evaluate APOH as a positional candidate for prcd. METHODS: Expression of APOH in the retina was examined by reverse transcription-polymerase chain reaction (RT-PCR) and by immunocytochemistry in normal and prcd-affected dogs. The level of apoH in the plasma was determined by western blot analysis. Intragenic polymorphic markers were identified and typed in the prcd pedigree. Canine-rodent hybrid cell lines were analyzed to detect canine APOH. RESULTS: ApoH has been localized to the photoreceptor outer segment layer by immunocytochemistry. Its expression in the retina of normal and prcd-affected dogs was confirmed by RT-PCR. The levels of antihuman apoH cross-reacting material in plasma were similar in all dogs, regardless of disease status. Finally, linkage analysis of the APOH gene with the disease locus in the prcd pedigree detected 3 recombinants among 70 informative offsprings (lod score 15.09 at 0 = 4.3 centimorgan [cM]). CONCLUSIONS: APOH is expressed in the retina and tightly linked to the prcd locus. However, despite its potential role in phenotypes of abnormal lipid metabolism associated with prcd, the gene has been excluded as a primary candidate for prcd by linkage analysis.  (+info)

Repeated injections of a ciliary neurotrophic factor analogue leading to long-term photoreceptor survival in hereditary retinal degeneration. (8/1798)

PURPOSE: To determine whether ciliary neurotrophic factor (CNTF) or brain-derived neurotrophic factor (BDNF) treatment leads to long-term photoreceptor survival in hereditary retinal degeneration. METHODS: An autosomal dominant feline model of rod-cone dystrophy was used throughout the study with two normal animals. In the first experiment, intravitreal injections of a human CNTF analogue (Axokine; Regeneron Pharmaceuticals, Tarrytown, NY) were administered to one eye of each animal (n = 10) beginning on postnatal day 10 and were repeated every 4 weeks. Clinical and histopathologic examinations were performed at 5.5, 9.5, and 13.5 weeks. In the second experiment, animals (n = 17) were randomly assigned to receive intravitreal injections of either Axokine (at half the initial dose), human BDNF, or the vehicle for Axokine to one eye at 5.5 weeks. The same therapy was repeated every 4 weeks in each group. Clinical and histopathologic examinations were performed at 9.5, 13.5, and 17.5 weeks. Photoreceptor survival was assessed by cell counting. Apoptotic cells were identified by morphology and a modified TdT-dUTP terminal nick-end labeling (TUNEL) technique. In the third experiment, two normal animals were treated with Axokine as in the first experiment. Glial fibrillary acidic protein ((GFAP) immunohistochemistry was performed to assess glial cell reaction. RESULTS: In the first two experiments, Axokine significantly prolonged photoreceptor survival (P < 0.01) and reduced the presence of apoptotic cells (P < 0.05) and TUNEL-positive cells (P < 0.05). In the second experiment, results in the the BDNF- and sham-injected eyes were not significantly different from those in the untreated eyes. Minimal posterior subcapsular cataract and mild retinal folds were found in all Axokine-treated eyes in both dystrophic and normal animals. These complications were milder in the second experiment when injections were started later and at a reduced dose. GFAP immunolabeling was also increased in all Axokine-treated eyes. CONCLUSIONS: Axokine, but not BDNF, delays photoreceptor loss in this hereditary retinal degeneration. Repeated injections maintain the protective effect.  (+info)