The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. (1/633)

The dorsal gastrula organizer plays a fundamental role in establishment of the vertebrate axis. We demonstrate that the zebrafish bozozok (boz) locus is required at the blastula stages for formation of the embryonic shield, the equivalent of the gastrula organizer and expression of multiple organizer-specific genes. Furthermore, boz is essential for specification of dorsoanterior embryonic structures, including notochord, prechordal mesendoderm, floor plate and forebrain. We report that boz mutations disrupt the homeobox gene dharma. Overexpression of boz in the extraembryonic yolk syncytial layer of boz mutant embryos is sufficient for normal development of the overlying blastoderm, revealing an involvement of extraembryonic structures in anterior patterning in fish similarly to murine embryos. Epistatic analyses indicate that boz acts downstream of beta-catenin and upstream to TGF-beta signaling or in a parallel pathway. These studies provide genetic evidence for an essential function of a homeodomain protein in beta-catenin-mediated induction of the dorsal gastrula organizer and place boz at the top of a hierarchy of zygotic genes specifying the dorsal midline of a vertebrate embryo.  (+info)

Delta-mediated specification of midline cell fates in zebrafish embryos. (2/633)

BACKGROUND: Fate mapping studies have shown that progenitor cells of three vertebrate embryonic midline structures - the floorplate in the ventral neural tube, the notochord and the dorsal endoderm - occupy a common region prior to gastrulation. This common region of origin raises the possibility that interactions between midline progenitor cells are important for their specification prior to germ layer formation. RESULTS: One of four known zebrafish homologues of the Drosophila melanogaster cell-cell signaling gene Delta, deltaA (dlA), is expressed in the developing midline, where progenitor cells of the ectodermal floorplate, mesodermal notochord and dorsal endoderm lie close together before they occupy different germ layers. We used a reverse genetic strategy to isolate a missense mutation of dlA, dlAdx2, which coordinately disrupts the development of floorplate, notochord and dorsal endoderm. The dlAdx2 mutant embryos had reduced numbers of floorplate and hypochord cells; these cells lie above and beneath the notochord, respectively. In addition, mutant embryos had excess notochord cells. Expression of a dominant-negative form of Delta protein driven by mRNA microinjection produced a similar effect. In contrast, overexpression of dlA had the opposite effect: fewer trunk notochord cells and excess floorplate and hypochord cells. CONCLUSION: Our results indicate that Delta signaling is important for the specification of midline cells. The results are most consistent with the hypothesis that developmentally equivalent midline progenitor cells require Delta-mediated signaling prior to germ layer formation in order to be specified as floorplate, notochord or hypochord.  (+info)

Intronic enhancers control expression of zebrafish sonic hedgehog in floor plate and notochord. (3/633)

The signalling molecule Sonic hedgehog (Shh) controls a wide range of differentiation processes during vertebrate development. Numerous studies have suggested that the absolute levels as well as correct spatial and temporal expression of shh are critical for its function. To investigate the regulation of shh expression, we have studied the mechanism controlling its spatial expression in the zebrafish. We employed an enhancer screening strategy in zebrafish embryos based on co-injection of putative enhancer sequences with a reporter construct and analysis of mosaic expression in accumulated expression maps. Enhancers were identified in intron 1 and 2 that mediate floor plate and notochord expression. These enhancers also drive notochord and floor plate expression in the mouse embryo strongly suggesting that the mechanisms controlling shh expression in the midline are conserved between zebrafish and mouse. Functional analysis in the zebrafish embryo revealed that the intronic enhancers have a complex organisation. Two activator regions, ar-A and ar-C, were identified in intron 1 and 2, respectively, which mediate mostly notochord and floor plate expression. In contrast, another activating region, ar-B, in intron 1 drives expression in the floor plate. Deletion fine mapping of ar-C delineated three regions of 40 bp to be essential for activity. These regions do not contain binding sites for HNF3beta, the winged helix transcription factor previously implicated in the regulation of shh expression, indicating the presence of novel regulatory mechanisms. A T-box transcription factor-binding site was found in a functionally important region that forms specific complexes with protein extracts from wild-type but not from notochord-deficient mutant embryos.  (+info)

Segmental expression of aggrecan in the non-segmented perinotochordal sheath underlies normal segmentation of the vertebral column. (4/633)

The embryonic vertebral column is derived from the unsegmented axial mesenchyme surrounding the notochord, and its development and differentiation are influenced by the notochord. The role of cartilage in determining the ultimate pattern of the segmental skeleton has been well documented, but a gene whose segmental expression corresponds to the pattern of the developing skeleton has yet to be identified. We show that chick aggrecan is initially expressed within the entire length of the notochord, and as development proceeds, aggrecan expression becomes restricted to the surrounding perinotochordal sheath in a segmental pattern, mirroring the differentiated somite pattern.  (+info)

SWiP-1: novel SOCS box containing WD-protein regulated by signalling centres and by Shh during development. (5/633)

We describe a novel chick WD-protein, cSWiP-1, expressed in somitic mesoderm and developing limb buds as well as in other embryonic structures where Hedgehog signalling has been shown to play a role. Using embryonic manipulations we show that in somites cSWiP-1 expression integrates two signals originating from structures adjacent to the segmental mesoderm: a positive signal from the notochord and a negative signal from intermediate and/or lateral mesoderm. In explant cultures of somitic mesoderm, Shh protein induces cSWiP-1, while a blocking antibody to Shh inhibits the induction of cSWiP-1 by the notochord. These results show that the positive signal from the notochord is mediated by Shh. We also show that in limb buds cSWiP-1 is upregulated by ectopic Shh. This occurs in about the same time period as upregulation of BMP2, placing cSWiP-1 among the earliest markers for the change of limb pattern caused by ectopic Shh. We also describe a human homologue of cSWiP-1 and a mouse gene, mSWiP-2, that is more distantly related to SWiP-1, suggesting that SWiP-1 belongs to a novel subfamily of WD-proteins.  (+info)

Axial mesendoderm refines rostrocaudal pattern in the chick nervous system. (6/633)

There has long been controversy concerning the role of the axial mesoderm in the induction and rostrocaudal patterning of the vertebrate nervous system. Here we investigate the neural inducing and regionalising properties of defined rostrocaudal regions of head process/prospective notochord in the chick embryo by juxtaposing these tissues with extraembryonic epiblast or neural plate explants. We localise neural inducing signals to the emerging head process and using a large panel of region-specific neural markers, show that different rostrocaudal levels of the head process derived from headfold stage embryos can induce discrete regions of the central nervous system. However, we also find that rostral and caudal head process do not induce expression of any of these molecular markers in explants of the neural plate. During normal development the head process emerges beneath previously induced neural plate, which we show has already acquired some rostrocaudal character. Our findings therefore indicate that discrete regions of axial mesendoderm at headfold stages are not normally responsible for the establishment of rostrocaudal pattern in the neural plate. Strikingly however, we do find that caudal head process inhibits expression of rostral genes in neural plate explants. These findings indicate that despite the ability to induce specific rostrocaudal regions of the CNS de novo, signals provided by the discrete regions of axial mesendoderm do not appear to establish regional differences, but rather refine the rostrocaudal character of overlying neuroepithelium.  (+info)

Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development. (7/633)

During axial skeleton development, the notochord is essential for the induction of the sclerotome and for the subsequent differentiation of cartilage forming the vertebral bodies and intervertebral discs. These functions are mainly mediated by the diffusible signaling molecule Sonic hedgehog. The products of the paired-box-containing Pax1 and the mesenchyme forkhead-1 (Mfh1) genes are expressed in the developing sclerotome and are essential for the normal development of the vertebral column. Here, we demonstrate that Mfh1 like Pax1 expression is dependent on Sonic hedgehog signals from the notochord, and Mfh1 and Pax1 act synergistically to generate the vertebral column. In Mfh1/Pax1 double mutants, dorsomedial structures of the vertebrae are missing, resulting in extreme spina bifida accompanied by subcutaneous myelomeningocoele, and the vertebral bodies and intervertebral discs are missing. The morphological defects in Mfh1/Pax1 double mutants strongly correlate with the reduction of the mitotic rate of sclerotome cells. Thus, both the Mfh1 and the Pax1 gene products cooperate to mediate Sonic hedgehog-dependent proliferation of sclerotome cells.  (+info)

Disruption of zebrafish somite development by pharmacologic inhibition of Hsp90. (8/633)

Members of the Hsp90 family of molecular chaperones play important roles in allowing some intracellular signaling molecules and transcription factors to reach and maintain functionally active conformations. In the present study, we have utilized the specific Hsp90-binding agent, geldanamycin, to examine the requirement for Hsp90 during zebrafish development. We show that geldanamycin interacts with both the alpha and the beta-isoforms of zebrafish Hsp90 and that geldanamycin-treated embryos consistently exhibit a number of defects in tissues which express either one of these genes. Within the somites, geldanamycin treatment results in the absence of eng-2-expressing muscle pioneer cells. However, early development of adaxial cells, which give rise to muscle pioneers and which strongly express the hsp90alpha gene shortly before muscle pioneer formation, appeared unaffected. Furthermore, development of the notochord, which provides many of the signals required for proper somite patterning and which does not express detectable levels of either hsp90alpha or hsp90beta mRNA, was similarly unaffected in geldanamycin-treated embryos. The data are consistent with there being a temporal and spatial requirement for Hsp90 function within somitic cells which is necessary for the formation of eng-2-expressing muscle pioneers and possibly other striated muscle fiber types.  (+info)