Morphological and functional changes of mitochondria from density separated trout erythrocytes. (9/392)

Density separated trout erythrocytes, using a discontinuous Percoll gradient, yielded three distinct subfractions (top, middle and bottom) since older cells are characterized by increasing density. Cells from each subfraction were incubated with mitochondria-specific fluorescent probe Mitotracker and JC-1 in order to assess mitochondrial mass and membrane potential by means of cytofluorimetric analysis, confocal microscopy and subsequent computer-aided image analysis allowing a detailed investigation at single cell level. Both cytofluorimetric data and image analysis revealed changes in size and redistribution of mitochondria starting from the light fraction to the bottom. In particular in young erythrocytes small mitochondria were detected localized exclusively around the nucleus in a crown-like shape, the middle fraction revealed enlarged mitochondria partially scattered throughout the cytosol, whereas the last fraction represented again mitochondria with reduced size being distinctly dispersed throughout the cytosol in the cells. Concerning membrane potential considerations, our study revealed a dramatic decrease of DeltaPsi(m) in the bottom layer cell mitochondria compared to the top and unusual membrane potential increase of a subpopulation of enlarged mitochondria. DeltapH was also investigated in the three fractions by pretreating the cells with nigericin, allowing to confirm a mitochondrial energetic impairment in older cells.  (+info)

Enhancement of the antifungal activity of rapamycin by the coproduced elaiophylin and nigericin. (10/392)

Streptomyces hygroscopicus ATCC 29253 produces rapamycin, elaiophylin and nigericin. Although elaiophylin has no activity against Candida albicans ATCC 11651, it markedly enhances rapamycin's antifungal activity. Nigericin has only weak activity on its own but it also enhances rapamycin action. Surprisingly, elaiophylin does not enhance nigericin activity on C. albicans.  (+info)

Acid incubation causes exocytic insertion of NHE3 in OKP cells. (11/392)

Incubation of opossum kidney clone P (OKP) cells in acid media (pH 6. 8) causes activation of Na(+)/H(+) exchanger 3 (NHE3) at 6, 12, and 24 h. OKP cell NHE3 protein abundance was increased by 45% at 24 h of acid incubation but was unaffected at 3-12 h. By contrast, apical membrane NHE3, measured by surface biotinylation, increased approximately twofold at 6, 12, and 24 h, mirroring the increase in activity. Acid incubation caused a 76% increase in exocytic insertion of NHE3 into the apical membrane but had no effect on endocytic internalization at 6 h. Latrunculin B, an inhibitor of microfilament organization, inhibited the acid-induced increases in apical membrane NHE3, exocytic insertion of NHE3, and NHE3 activity at 6 h. These studies demonstrate two mechanisms for acid-induced increases in NHE3 activity. Beginning at 6 h, there is an increase in apical membrane NHE3 that is due to stimulated exocytic insertion and is required for increased NHE3 activity. At 24 h, there is an additional increase in total cellular NHE3.  (+info)

Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation. (12/392)

The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH(4)Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM. In rat mast cells, nigericin and NH(4)Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx. The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol. After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%. The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells.  (+info)

Mutations in a tRNA import signal define distinct receptors at the two membranes of Leishmania mitochondria. (13/392)

Nucleus-encoded tRNAs are selectively imported into the mitochondrion of Leishmania, a kinetoplastid protozoan. An oligoribonucleotide constituting the D stem-loop import signal of tRNA(Tyr)(GUA) was efficiently transported into the mitochondrial matrix in organello as well as in vivo. Transfer through the inner membrane could be uncoupled from that through the outer membrane and was resistant to antibody against the outer membrane receptor TAB. A number of mutations in the import signal had differential effects on outer and inner membrane transfer. Some mutants which efficiently traversed the outer membrane were unable to enter the matrix. Conversely, restoration of the loop-closing GC pair in reverse resulted in reversion of transfer through the inner, but not the outer, membrane, and binding of the RNA to the inner membrane was restored. These experiments indicate the presence at the two membranes of receptors with distinct specificities which mediate stepwise transfer into the mitochondrial matrix. The combination of oligonucleotide mutagenesis and biochemical fractionation may provide a general tool for the identification of tRNA transport factors.  (+info)

Altered cytokine production in mice lacking P2X(7) receptors. (14/392)

The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.  (+info)

Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. (15/392)

Senescence-associated (beta)-galactosidase is widely used as a biomarker of replicative senescence. However, it remains unknown whether this is a distinct enzyme active at pH 6, and differentially expressed in senescence, or a manifestation of an increase in the classic acid lysosomal (beta)-galactosidase. Here we have investigated the origin of senescence-associated-(beta)-galactosidase activity by modifying the intracellular and lysosomal pH of young and senescent human umbilical vein endothelial cells and examining the effect of these manipulations on the levels of activity, using a flow cytometric assay. Lysosomal alkalinisation with chloroquine or bafilomycin A(1), as well as equilibration of the intracellular milieu to pH 6 with nigericin, caused a profound (92-99%) inhibition of the total intracellular (beta)-galactosidase activity. However, independent of pH alterations, senescent cells showed levels of (beta)-galactosidase activity three- to sixfold higher than young cells. This increase in activity occurred in parallel to an increase in (beta)-galactosidase protein levels. Acridine Orange staining revealed an increase in lysosomal content with replicative age, which correlated with the increase in (beta)-galactosidase. These findings demonstrate that senescence-associated (beta)-galactosidase is a manifestation of residual lysosomal activity at a suboptimal pH, which becomes detectable due to the increased lysosomal content in senescent cells.  (+info)

Dissociation of staurosporine-induced apoptosis from G2-M arrest in SW620 human colonic carcinoma cells: initiation of the apoptotic cascade is associated with elevation of the mitochondrial membrane potential (deltapsim). (16/392)

We have identified an alternative apoptotic cascade induced in SW620 human colonic carcinoma cells by the protein kinase antagonist staurosporine (stsp). Consistent with its effect in other colonic epithelial cells, stsp induced G2-M arrest and apoptosis of SW620 cells. However, despite the paradigm that growth arrest triggers apoptotic cascades, apoptosis was detected before G2-M arrest. Reports have linked dissipation of the mitochondrial membrane potential (deltapsim) to the initiation of apoptosis and have linked elevation of the deltapsim to the escape from apoptosis However, neither apoptosis nor cell cycle arrest were altered by the collapse of the deltapsim, and increased deltapsim enhanced the initiation of apoptosis but blocked G2-M arrest. Although reactive oxygen species (ROS) have been implicated in some colonic epithelial cell and stsp-induced cascades, neither antioxidants nor the inhibition of RNA or protein synthesis altered apoptosis of SW620 cells. Finally, cytosolic cytochrome c has been linked to activation of caspase-3 and dissipation of the deltapsim. However, caspase-3 activation preceded the accumulation of cytochrome c in the cytosol and was accompanied by transient elevations in both the deltapsim and mitochondria-associated cytochrome c. Therefore, we have identified a distinct apoptotic cascade in SW620 cells that was induced independently of growth arrest, dissipation of the deltapsim, ROS production, or synthesis of de novo RNA or protein, and we have linked its efficient initiation to early elevation of the deltapsim.  (+info)