A novel minicollagen gene links cnidarians and myxozoans. (1/14)

 (+info)

Effects of satiation and starvation on nematocyst discharge, prey killing, and ingestion in two species of sea anemone. (2/14)

Studies spanning 60 years with several cnidarian species show that satiation inhibits prey capture and ingestion and that starvation increases prey capture and ingestion. Most have attributed the effects of satiation to inhibition of nematocyst discharge. We hypothesized that satiation inhibits prey capture and ingestion in sea anemones (Haliplanella luciae and Aiptasia pallida) primarily by inhibiting the intrinsic adherence (i.e., holding power) of discharging nematocysts. Using a quantitative feeding assay for H. luciae, we found that satiation completely uncoupled prey killing from prey ingestion, while nematocyst-mediated prey killing was only partially inhibited. Using A. pallida to measure nematocyst discharge and nematocyst-mediated adhesive force, we showed that satiation completely inhibited the intrinsic adherence of discharging nematocysts from Type B and Type C cnidocyte/supporting cell complexes (CSCCs), while only partially inhibiting nematocyst discharge from Type Bs. These inhibitory effects of satiation were gradually restored by starvation, reaching a maximum at 72 h after feeding. Thus, the effects of satiation and starvation on prey killing and ingestion in two species of acontiate sea anemones are primarily due to changes in the intrinsic adherence of nematocysts from both Type B and Type C CSCCs.  (+info)

Morphological and molecular analysis of the Nematostella vectensis cnidom. (3/14)

 (+info)

Fine structure, histochemistry, and morphogenesis during excystment of the podocysts of the giant jellyfish Nemopilema nomurai (Scyphozoa, Rhizostomeae). (4/14)

Production of podocysts is the exclusive form of asexual reproduction by polyps of the giant jellyfish Nemopilema nomurai, which has been recurrently blooming in the East Asian seas in the last decade. Podocycts consist of a dome-shaped chitinous capsule with laminated structure that encapsulates a mass of cyst cells filled with granules containing nutrient reserves such as proteins, carbohydrates, and lipids. Mitochondria, rough endoplasmic reticulum, and Golgi complexes are scarce in the cytoplasm of these cells, and the staining reaction for RNA is weak, indicating very low metabolic activity. Podocysts are capable of dormancy for at least 5 years without significant change of internal structure or nutrient reserves. Integrated information about spontaneous and artificially induced metamorphosis suggests that the following processes occur during excystment: (1) nematocyst formation in the internal cell mass, (2) stratification of the cell mass into endoderm and ectoderm, (3) extrusion of the cell mass through a gradual opening of the capsule, (4) formation of primordial polyp mouth and tentacles, and (5) metamorphosis to a polyp. We morphologically confirmed that N. nomurai podocysts have the capacity for long-term dormancy, an ability that should contribute to the periodic nature of the massive blooms of medusae of this species.  (+info)

Proteome of Hydra nematocyst. (5/14)

 (+info)

A modified view on octocorals: Heteroxenia fuscescens nematocysts are diverse, featuring both an ancestral and a novel type. (6/14)

 (+info)

The nematocyst: a molecular map of the cnidarian stinging organelle. (7/14)

Nematocysts or cnidocysts represent the common feature of all cnidarians. They are large organelles produced from the Golgi apparatus as a secretory product within a specialized cell, the nematocyte or cnidocyte. Nematocysts are predominantly used for prey capture and defense, but also for locomotion. In spite of large variations in size and morphology, nematocysts share a common build comprising a cylindrical capsule to which a long hollow thread is attached. The thread is inverted and coiled within the capsule and may be armed with spines in some nematocyst types. During the discharge of nematocysts following a chemical or mechanical stimulus, the thread is expelled from within the capsule matrix in a harpoon-like fashion. This process constitutes one of the fastest in biology and is accompanied by a release of toxins that are potentially harmful also for humans. The long history of research on Hydra as a model organism has been accompanied by the cellular, mechanistic and morphological analysis of its nematocyst repertoire. Although representing one of the most complex organelles of the animal kingdom, the evolutionary origin and molecular map of the nematocyst has remained largely unknown. Recent efforts in unraveling the molecular content of this fascinating organelle have revealed intriguing parallels to the extracellular matrix.  (+info)

Analgesic and antibutyrylcholinestrasic activities of the venom prepared from the Mediterranean jellyfish Pelagia noctiluca (Forsskal, 1775). (8/14)

 (+info)