Detection and characterization of T cells specific for BDC2.5 T cell-stimulating peptides. (1/5)

Nonobese diabetic (NOD) mice expressing the BDC2.5 TCR transgene are useful for studying type 1 diabetes. Several peptides have been identified that are highly active in stimulating BDC2.5 T cells. Herein, we describe the use of I-Ag7 tetramers containing two such peptides, p79 and p17, to detect and characterize peptide-specific T cells. The tetramers could stain CD4(+) T cells in the islets and spleens of BDC2.5 transgenic mice. The percentage of CD4(+), tetramer(+) T cells increased in older mice, and it was generally higher in the islets than in the spleens. Our results also showed that tetAg7/p79 could stain a small population of CD4(+) T cells in both islets and spleens of NOD mice. The percentage of CD4(+), tetramer(+) T cells increased in cells that underwent further cell division after being activated by peptides. The avidity of TCRs on purified tetAg7/p79(+) T cells for tetAg7/p79 was slightly lower than that of BDC2.5 T cells. Although tetAg7/p79(+) T cells, like BDC2.5 T cells, secreted a large quantity of IFN-gamma, they were biased toward being IL-10-producing cells. Additionally, <3% of these cells expressed TCR Vbeta4. In vivo adoptive transfer experiments showed that NOD/scid recipient mice cotransferred with tetAg7/p79(+) T cells and NOD spleen cells, like mice transferred with NOD spleen cells only, developed diabetes. Therefore, we have generated Ag-specific tetramers that could detect a heterogeneous population of T cells, and a very small number of NOD mouse T cells may represent BDC2.5-like cells.  (+info)

Induction of EAE by T cells specific for alpha B-crystallin depends on prior viral infection in the CNS. (2/5)

While myelin-reactive T cells are widely believed to play a pathogenic role in multiple sclerosis (MS), no substantial differences appear to exist in T-cell responses to myelin antigens between MS patients and healthy subjects. As an example, indistinguishable peripheral T-cell responses and serum antibody levels have been found in MS patients and healthy controls to alpha B-crystallin, a dominant antigen in MS-affected brain myelin. This suggests that additional factors are relevant in allowing myelin-reactive T cells to become pathogenic. In this study, we examined whether the inflammatory state of the CNS is relevant to the pathogenicity of alpha B-crystallin-specific T cells in mice. In normal mice, T-cell responses against alpha B-crystallin are limited by robust immunological tolerance. Reactive T cells were therefore generated in alpha B-crystallin-deficient mice, and these T cells were transferred into C57BL/6 recipients. While such a transfer in itself never induced any clinical signs of experimental autoimmune encephalomyelitis (EAE) in healthy recipient mice, acute EAE could be induced in animals that had been infected 7 days before with the avirulent A7(74) strain of Semliki Forest virus (SFV). SFV infection alone did not induce clinical disease, nor did it alter the expression levels of the target antigen. Our findings indicate that at least in mice, alpha B-crystallin-specific T cells can trigger EAE but only when prior viral infection has induced an inflammatory state in the CNS that helps recruit and activate T cells.  (+info)

Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis. (3/5)

 (+info)

Developmentally divergent effects of Rho-kinase inhibition on cocaine- and BDNF-induced behavioral plasticity. (4/5)

 (+info)

Anti-IL-17A treatment reduces clinical score and VCAM-1 expression detected by in vivo magnetic resonance imaging in chronic relapsing EAE ABH mice. (5/5)

 (+info)