Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. (41/79074)

Ethambutol (EMB) is the most frequent "fourth drug" used for the empiric treatment of Mycobacterium tuberculosis and a frequently used drug for infections caused by Mycobacterium avium complex. The pharmacokinetics of EMB in serum were studied with 14 healthy males and females in a randomized, four-period crossover study. Subjects ingested single doses of EMB of 25 mg/kg of body weight under fasting conditions twice, with a high-fat meal, and with aluminum-magnesium antacid. Serum was collected for 48 h and assayed by gas chromatography-mass spectrometry. Data were analyzed by noncompartmental methods and by a two-compartment pharmacokinetic model with zero-order absorption and first-order elimination. Both fasting conditions produced similar results: a mean (+/- standard deviation) EMB maximum concentration of drug in serum (Cmax) of 4.5 +/- 1.0 micrograms/ml, time to maximum concentration of drug in serum (Tmax) of 2.5 +/- 0.9 h, and area under the concentration-time curve from 0 h to infinity (AUC0-infinity) of 28.9 +/- 4.7 micrograms.h/ml. In the presence of antacids, subjects had a mean Cmax of 3.3 +/- 0.5 micrograms/ml, Tmax of 2.9 +/- 1.2 h, and AUC0-infinity of 27.5 +/- 5.9 micrograms.h/ml. In the presence of the Food and Drug Administration high-fat meal, subjects had a mean Cmax of 3.8 +/- 0.8 micrograms/ml, Tmax of 3.2 +/- 1.3 h, and AUC0-infinity of 29.6 +/- 4.7 micrograms.h/ml. These reductions in Cmax, delays in Tmax, and modest reductions in AUC0-infinity can be avoided by giving EMB on an empty stomach whenever possible.  (+info)

Synergy of an investigational glycopeptide, LY333328, with once-daily gentamicin against vancomycin-resistant Enterococcus faecium in a multiple-dose, in vitro pharmacodynamic model. (42/79074)

The pharmacodynamics of an investigational glycopeptide, LY333328 (LY), alone and in combination with gentamicin, against one vancomycin-susceptible and two vancomycin-resistant Enterococcus faecium strains were studied with a multiple-dose, in vitro pharmacodynamic model (PDM). Dose-range data for the PDM studies were obtained from static time-kill curve studies. In PDM experiments conducted over 48 h, peak LY concentrations of 0.1x and 1x the MIC every 24 h and peak gentamicin concentrations of 18 micrograms/ml every 24 h (Gq24 h) and 6 micrograms/ml every 8 h (Gq8 h) were studied alone and in the four possible LY-gentamicin combinations. Compared to either antibiotic alone, LY-gentamicin combination regimens produced significantly higher apparent killing rates (KRs) calculated during the initial 2 h postdosing. The mean KRs for LY or gentamicin alone versus those for the LY-gentamicin combination regimens were 0.35 +/- 0.55 log10 CFU/ml/h (95% confidence interval [CI95%], 0 to 0.70) and 1.46 +/- 0.71 log10 CFU/ml/h (CI95%, 1.01 to 1.91), respectively (P < 0.0001). Bacterial killing at 48 h (BK48), which was calculated by subtracting the bacterial counts at 48 h from the initial inoculum, with a negative value indicating net growth, was also significantly greater. The mean BK48S were -0.69 +/- 0.44 log10 CFU/ml (CI95%, -0.41 to -0.97) and 3.72 +/- 2.28 log10 CFU/ml (CI95%, 2.28 to 5.17) for LY or gentamicin alone versus LY-gentamicin combination regimens, respectively (P < 0.0001). None of the 12 regimens with LY or gentamicin alone but 75% (9 of 12) of the LY-gentamicin combination regimens were bactericidal. Eighty-three percent (10 of 12) of the LY-gentamicin combination regimens also demonstrated synergy. No significant differences between the pharmacodynamics of LY-gentamicin combination regimens containing Gq24 h versus those containing Gq8h were detected.  (+info)

Efficacy of ampicillin plus ceftriaxone in treatment of experimental endocarditis due to Enterococcus faecalis strains highly resistant to aminoglycosides. (43/79074)

The purpose of this work was to evaluate the in vitro possibilities of ampicillin-ceftriaxone combinations for 10 Enterococcus faecalis strains with high-level resistance to aminoglycosides (HLRAg) and to assess the efficacy of ampicillin plus ceftriaxone, both administered with humanlike pharmacokinetics, for the treatment of experimental endocarditis due to HLRAg E. faecalis. A reduction of 1 to 4 dilutions in MICs of ampicillin was obtained when ampicillin was combined with a fixed subinhibitory ceftriaxone concentration of 4 micrograms/ml. This potentiating effect was also observed by the double disk method with all 10 strains. Time-kill studies performed with 1 and 2 micrograms of ampicillin alone per ml or in combination with 5, 10, 20, 40, and 60 micrograms of ceftriaxone per ml showed a > or = 2 log10 reduction in CFU per milliliter with respect to ampicillin alone and to the initial inoculum for all 10 E. faecalis strains studied. This effect was obtained for seven strains with the combination of 2 micrograms of ampicillin per ml plus 10 micrograms of ceftriaxone per ml and for six strains with 5 micrograms of ceftriaxone per ml. Animals with catheter-induced endocarditis were infected intravenously with 10(8) CFU of E. faecalis V48 or 10(5) CFU of E. faecalis V45 and were treated for 3 days with humanlike pharmacokinetics of 2 g of ampicillin every 4 h, alone or combined with 2 g of ceftriaxone every 12 h. The levels in serum and the pharmacokinetic parameters of the humanlike pharmacokinetics of ampicillin or ceftriaxone in rabbits were similar to those found in humans treated with 2 g of ampicillin or ceftriaxone intravenously. Results of the therapy for experimental endocarditis caused by E. faecalis V48 or V45 showed that the residual bacterial titers in aortic valve vegetations were significantly lower in the animals treated with the combinations of ampicillin plus ceftriaxone than in those treated with ampicillin alone (P < 0.001). The combination of ampicillin and ceftriaxone showed in vitro and in vivo synergism against HLRAg E. faecalis.  (+info)

Pharmacodynamic comparisons of levofloxacin, ciprofloxacin, and ampicillin against Streptococcus pneumoniae in an in vitro model of infection. (44/79074)

The increasing frequency of penicillin-resistant pneumococcus continues to be of concern throughout the world. Newer fluoroquinolone antibiotics, such as levofloxacin, have shown enhanced in vitro activity against Streptococcus pneumoniae. In this study, the bactericidal characteristics and pharmacodynamic profiles of levofloxacin, ciprofloxacin, and ampicillin against four isolates of S. pneumoniae were compared by using an in vitro model of infection. Standard antibiotic dosing regimens which simulated the pharmacokinetic profile observed in humans were used. Control and treatment models were sampled for bacterial CFU per milliliter over the duration of each 24- or 48-h experiment. In addition, treatment models were sampled for MIC determinations and drug concentration. Regrowth of all isolates as well as an increase in MICs throughout the study period was observed in the ciprofloxacin experiments. A limited amount of regrowth was noted during levofloxacin therapy for one isolate; however, no change in MIC was detected for any isolate. Ampicillin showed rapid and sustained bactericidal activity against all isolates. In this study, ratios of effective fluoroquinolone area under the concentration-time curve (AUC):MIC values ranged from 30 to 55. Levofloxacin, owing to its larger AUC0-24 values, has excellent and sustained activity against different pneumococcal strains superior to that of ciprofloxacin.  (+info)

Calculation of a Gap restoration in the membrane skeleton of the red blood cell: possible role for myosin II in local repair. (45/79074)

Human red blood cells contain all of the elements involved in the formation of nonmuscle actomyosin II complexes (V. M. Fowler. 1986. J. Cell. Biochem. 31:1-9; 1996. Curr. Opin. Cell Biol. 8:86-96). No clear function has yet been attributed to these complexes. Using a mathematical model for the structure of the red blood cell spectrin skeleton (M. J. Saxton. 1992. J. Theor. Biol. 155:517-536), we have explored a possible role for myosin II bipolar minifilaments in the restoration of the membrane skeleton, which may be locally damaged by major mechanical or chemical stress. We propose that the establishment of stable links between distant antiparallel actin protofilaments after a local myosin II activation may initiate the repair of the disrupted area. We show that it is possible to define conditions in which the calculated number of myosin II minifilaments bound to actin protofilaments is consistent with the estimated number of myosin II minifilaments present in the red blood cells. A clear restoration effect can be observed when more than 50% of the spectrin polymers of a defined area are disrupted. It corresponds to a significant increase in the spectrin density in the protein free region of the membrane. This may be involved in a more complex repair process of the red blood cell membrane, which includes the vesiculation of the bilayer and the compaction of the disassembled spectrin network.  (+info)

The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. (46/79074)

The reaction of molecules confined to two dimensions is of interest in cell adhesion, specifically for the reaction between cell surface receptors and substrate-bound ligand. We have developed a model to describe the overall rate of reaction of species that are bound to surfaces under relative motion, such that the Peclet number is order one or greater. The encounter rate between reactive species is calculated from solution of the two-dimensional convection-diffusion equation. The probability that each encounter will lead to binding depends on the intrinsic rate of reaction and the encounter duration. The encounter duration is obtained from the theory of first passage times. We find that the binding rate increases with relative velocity between the two surfaces, then reaches a plateau. This plateau indicates that the increase in the encounter rate is counterbalanced by the decrease in the encounter duration as the relative velocity increases. The binding rate is fully described by two dimensionless parameters, the Peclet number and the Damkohler number. We use this model to explain data from the cell adhesion literature by incorporating these rate laws into "adhesive dynamics" simulations to model the binding of a cell to a surface under flow. Leukocytes are known to display a "shear threshold effect" when binding selectin-coated surfaces under shear flow, defined as an increase in bind rate with shear; this effect, as calculated here, is due to an increase in collisions between receptor and ligand with increasing shear. The model can be used to explain other published data on the effect of wall shear rate on the binding of cells to surfaces, specifically the mild decrease in binding within a fixed area with increasing shear rate.  (+info)

Kinetic and thermodynamic aspects of lipid translocation in biological membranes. (47/79074)

A theoretical analysis of the lipid translocation in cellular bilayer membranes is presented. We focus on an integrative model of active and passive transport processes determining the asymmetrical distribution of the major lipid components between the monolayers. The active translocation of the aminophospholipids phosphatidylserine and phosphatidylethanolamine is mathematically described by kinetic equations resulting from a realistic ATP-dependent transport mechanism. Concerning the passive transport of the aminophospholipids as well as of phosphatidylcholine, sphingomyelin, and cholesterol, two different approaches are used. The first treatment makes use of thermodynamic flux-force relationships. Relevant forces are transversal concentration differences of the lipids as well as differences in the mechanical states of the monolayers due to lateral compressions. Both forces, originating primarily from the operation of an aminophospholipid translocase, are expressed as functions of the lipid compositions of the two monolayers. In the case of mechanical forces, lipid-specific parameters such as different molecular surface areas and compression force constants are taken into account. Using invariance principles, it is shown how the phenomenological coefficients depend on the total lipid amounts. In a second approach, passive transport is analyzed in terms of kinetic mechanisms of carrier-mediated translocation, where mechanical effects are incorporated into the translocation rate constants. The thermodynamic as well as the kinetic approach are applied to simulate the time-dependent redistribution of the lipid components in human red blood cells. In the thermodynamic model the steady-state asymmetrical lipid distribution of erythrocyte membranes is simulated well under certain parameter restrictions: 1) the time scales of uncoupled passive transbilayer movement must be different among the lipid species; 2) positive cross-couplings of the passive lipid fluxes are needed, which, however, may be chosen lipid-unspecifically. A comparison of the thermodynamic and the kinetic approaches reveals that antiport mechanisms for passive lipid movements may be excluded. Simulations with kinetic symport mechanisms are in qualitative agreement with experimental data but show discrepancies in the asymmetrical distribution for sphingomyelin.  (+info)

General method of analysis of kinetic equations for multistep reversible mechanisms in the single-exponential regime: application to kinetics of open complex formation between Esigma70 RNA polymerase and lambdaP(R) promoter DNA. (48/79074)

A novel analytical method based on the exact solution of equations of kinetics of unbranched first- and pseudofirst-order mechanisms is developed for application to the process of Esigma70 RNA polymerase (R)-lambdaPR promoter (P) open complex formation, which is described by the minimal three-step mechanism with two kinetically significant intermediates (I1, I2), [equation: see text], where the final product is an open complex RPo. The kinetics of reversible and irreversible association (pseudofirst order, [R] >> [P]) to form long-lived complexes (RPo and I2) and the kinetics of dissociation of long-lived complexes both exhibit single exponential behavior. In this situation, the analytical method provides explicit expressions relating observed rate constants to the microscopic rate constants of mechanism steps without use of rapid equilibrium or steady-state approximations, and thereby provides a basis for interpreting the composite rate constants of association (ka), isomerization (ki), and dissociation (kd) obtained from experiment for this or any other sequential mechanism of any number of steps. In subsequent papers, we apply this formalism to analyze kinetic data obtained in the reversible and irreversible binding regimes of Esigma70 RNA polymerase (R)-lambdaP(R) promoter (P) open complex formation.  (+info)