Analysis of the effects of food and of digestive secretions on the small intestine of the rat. 1. Mucosal morphology and epithelial replacement. (1/11754)

A modified Roux-en-Y repositioning of rat small intestine was performed so that the proximal segment of bowel (A) received only bile and pancreastic secretions, the second (B) received food direct from the stomach, and these two segments drained into a third (C). Four to five weeks after operation, cell production was assessed by injection of vincristine into operated, sham-operated and unoperated rats, and counts of blocked metaphases were made on isolated microdissected crypts. Villus height, crypt depth, and the number of crypts per villus (crypt/villus ratio) were also measured. Most of segment A showed no significant differences from sham-operated intestine, although the normal proximo-distal gradient of villus height was abolished. At the distal end (near the anastomosis with segments B and C), crypt depth and cell production were increased. The villus height gradient in segment B was also abolished, although crypt depth and cell production were significantly increased, especially at the proximal end. Crypt/villus ratio was also increased. Segment C showed all the characteristics of small bowel promoted to a more proximal position: increased villus height, crypt depth and cell production. Increased crypt/villus ratio was also observed. These results are discussed in terms of the role of food and of digestive secretions in the control of mucosal morphology and epithelial replacement.  (+info)

Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. (2/11754)

Human cyclin A1, a newly discovered cyclin, is expressed in testis and is thought to function in the meiotic cell cycle. Here, we show that the expression of human cyclin A1 and cyclin A1-associated kinase activities was regulated during the mitotic cell cycle. In the osteosarcoma cell line MG63, cyclin A1 mRNA and protein were present at very low levels in cells at the G0 phase. They increased during the progression of the cell cycle and reached the highest levels in the S and G2/M phases. Furthermore, the cyclin A1-associated histone H1 kinase activity peaked at the G2/M phase. We report that cyclin A1 could bind to important cell cycle regulators: the Rb family of proteins, the transcription factor E2F-1, and the p21 family of proteins. The in vitro interaction of cyclin A1 with E2F-1 was greatly enhanced when cyclin A1 was complexed with CDK2. Associations of cyclin A1 with Rb and E2F-1 were observed in vivo in several cell lines. When cyclin A1 was coexpressed with CDK2 in sf9 insect cells, the CDK2-cyclin A1 complex had kinase activities for histone H1, E2F-1, and the Rb family of proteins. Our results suggest that the Rb family of proteins and E2F-1 may be important targets for phosphorylation by the cyclin A1-associated kinase. Cyclin A1 may function in the mitotic cell cycle in certain cells.  (+info)

Thyroid hormone effects on Krox-24 transcription in the post-natal mouse brain are developmentally regulated but are not correlated with mitosis. (3/11754)

Krox-24 (NGFI-A, Egr-1) is an immediate-early gene encoding a zinc finger transcription factor. As Krox-24 is expressed in brain areas showing post-natal neurogenesis during a thyroid hormone (T3)-sensitive period, we followed T3 effects on Krox-24 expression in newborn mice. We analysed whether regulation was associated with changes in mitotic activity in the subventricular zone and the cerebellum. In vivo T3-dependent Krox-24 transcription was studied by polyethylenimine-based gene transfer. T3 increased transcription from the Krox-24 promoter in both areas studied at post-natal day 2, but was without effect at day 6. An intact thyroid hormone response element (TRE) in the Krox-24 promoter was necessary for these inductions. These stage-dependent effects were also seen in endogenous Krox-24 mRNA levels: activation at day 2 and no effect at day 6. Moreover, similar results were obtained by examining beta-galactosidase expression in heterozygous mice in which one allele of the Krox-24 gene was disrupted with an inframe Lac-Z insertion. However, bromodeoxyuridine incorporation showed mitosis to continue through to day 6. We conclude first, that T3 activates Krox-24 transcription during early post-natal mitosis but that this effect is extinguished as development proceeds and second, loss of T3-dependent Krox-24 expression is not correlated with loss of mitotic activity.  (+info)

Diverse developing mouse lineages exhibit high-level c-Myb expression in immature cells and loss of expression upon differentiation. (4/11754)

The c-myb gene encodes a sequence specific transactivator that is required for fetal hematopoiesis, but its potential role in other tissues is less clear because of the early fetal demise of mice with targeted deletions of the c-myb gene and incomplete of knowledge about c-myb's expression pattern. In the hematopoietic system, c-Myb protein acts on target genes whose expression is restricted to individual lineages, despite Myb's presence and role in multiple immature lineages. This suggests that c-Myb actions within different cell type-specific contexts are strongly affected by combinatorial interactions. To consider the possibility of similar c-Myb actions could extend into non-hematopoietic systems in other cell and tissue compartments, we characterized c-myb expression in developing and adult mice using in situ hybridization and correlated this with stage-specific differentiation and mitotic activity. Diverse tissues exhibited strong c-myb expression during development, notably tooth buds, the thyroid primordium, developing trachea and proximal branching airway epithelium, hair follicles, hematopoietic cells, and gastrointestinal crypt epithelial cells. The latter three of these all maintained high expression into adulthood, but with characteristic restriction to immature cell lineages prior to their terminal differentiation. In all sites, during fetal and adult stages, loss of c-Myb expression correlated strikingly with the initiation of terminal differentiation, but not the loss of mitotic activity. Based on these data, we hypothesize that c-Myb's function during cellular differentiation is both an activator of immature gene expression and a suppressor of terminal differentiation in diverse lineages.  (+info)

The postnatal development of the alimentary canal in the opossum. I. Oesophagus. (5/11754)

The oesophageal epithelium of the newborn opossum generally is two to three cells in depth and in some regions appears pseudostratified. By the 9th postnatal day the epithelium shows two distinct strata. Ciliated cells and occasional goblet cells also are observed within the epithelium during this stage and in subsequent stages. Cilia persist in the oesophagus of the adult opossum, but are restricted to the depths of the transverse folds found in the distal part of the organ. The epithelium covering the transverse folds of the adult likewise has an immature appearance. By 4-5 cm (ca. 20 days), the epithelium has assumed a more mature appearance and is of greater depth. This and later stages show three basic strata: a germinal layer, a spinous layer and, adjacent to the lumen, a flattened layer of cells that retain their nuclei. The epithelium throughout the postnatal period and in the adult does not undergo complete keratinization. The oesophageal glands begin as outgrowths from the epithelium just prior to 4-5 cm (ca. 20 days). The glands continue their development throughout the remainder of the postnatal period. The secretory units of the oesophageal glands of the the major portion of the secretory elements, and a light, rounded cell type which is less numerous and which occupies the terminal portions of the secretory units. Secretory material of the former appears complex, consisting of both neutral and acid glycoproteins. The secretory product of the light cell type is unknown at present. Both cell types are encompassed by myoepithelial cells. The relationship of the mitotic sequences to the observations made by microscopic examination of the developing oesophagus is discussed.  (+info)

Changes in the total number of neuroglia, mitotic cells and necrotic cells in the anterior limb of the mouse anterior commissure following hypoxic stress. (6/11754)

The effects of hypoxic stress (390 mmHg) on the total number of glia, cell division, and cell death in the anterior limb of the anterior commissure were studied. There was a significant (P less than 0-01) fall in the total number of glia following exposure to hypoxia at 390 mmHg for two days. No significant change was observed in the total number of glia between the hypoxic and recovery group one week after return to sea level (ca. 760 mmHg). No change was observed in the number of mitotic figures in the control, hypoxic or recovery groups, but significant falls were observed in the mean number of necrotic cells between both the control and hypoxic groups (P less than 0-05) and the hypoxic and recovery groups (P less than 0-012). The decrease in necrotic cells may be due to a large number of elderly and effete cells, which would normally have undergone degeneration over a period of weeks, dying rapidly after the onset of hypoxia, thus temporarily reducing the daily cell death rate.  (+info)

The preprophase band: possible involvement in the formation of the cell wall. (7/11754)

Numerous vesicles were observed among the microtubules of the "preprophase" band in prophase cells from root tips of Allium cepa. The content of these vesicles looks similar to the matrix of adjacent cell walls, and these vesicles often appear to be involved in exocytosis. In addition, the cell walls perpendicular to the plane of (beneath) the preprophase band are often differentially thickened compared to the walls lying parallel to the plane of the band. Our interpretation of these observations is that the preprophase band may direct or channel vesicles containing precursors of the cell wall to localized regions of wall synthesis. The incorporation of constituents of the cell wall into a narrow region defined by the position of the preprophase band may be a mechanism that ensures unidirecitonal growth of meristematic cells.  (+info)

Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. (8/11754)

Arsenic exhibits a differential toxicity to cancer cells. At a high concentration (>5 microM), As2O3 causes acute necrosis in various cell lines. At a lower concentration (0.5-5 microm), it induces myeloid cell maturation and an arrest in metaphase, leading to apoptosis. As2O3-treated cells have features found with both tubulin-assembling enhancers (Taxol) and inhibitors (colchicine). Prior treatment of monomeric tubulin with As2O3 markedly inhibits GTP-induced polymerization and microtubule formation in vitro but does not destabilize GTP-induced tubulin polymers. Cross-inhibition experiments indicate that As2O3 is a noncompetitive inhibitor of GTP binding to tubulin. These observations correlate with the three-dimensional structure of beta-tubulin and suggest that the cross-linking of two vicinal cysteine residues (Cys-12 and Cys-213) by trivalent arsenic inactivates the GTP binding site. Furthermore, exogenous GTP can prevent As2O3-induced mitotic arrest.  (+info)