Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. (49/31967)

Rat fetal lung cells (RFL-6) were transiently transfected with a full-length rat heme oxygenase (HO)-1 cDNA construct and then exposed to hyperoxia (95% O2-5% CO2) for 48 h. Total HO activity and HO-1 protein were measured as well as cell viability, lactate dehydrogenase (LDH) release, protein oxidation, lipid peroxidation, and total glutathione to measure oxidative injury. HO-1 overexpression resulted in increased total HO activity (2-fold), increased HO-1 protein (1.5-fold), and increased cell proliferation. Immunohistochemistry revealed perinuclear HO-1 localization, followed by migration to the nucleus by day 3. Decreased cell death, protein oxidation, and lipid peroxidation but increased LDH release and glutathione depletion were seen with HO-1 overexpression. Reactive iron content could not explain the apparent loss of cell membrane integrity. With the addition of tin mesoporphyrin, total HO activity was decreased and all changes in injury parameters were normalized to control values. We conclude that moderate overexpression of HO-1 is protective against oxidative injury, but we speculate that there is a beneficial threshold of HO-1 expression.  (+info)

Localization of a candidate surfactant convertase to type II cells, macrophages, and surfactant subfractions. (50/31967)

Pulmonary surfactant exists in the alveolus in several distinct subtypes that differ in their morphology, composition, and surface activity. Experiments by others have implicated a serine hydrolase in the production of the inactive small vesicular subtype of surfactant (N. J. Gross and R. M. Schultz. Biochim. Biophys. Acta 1044: 222-230, 1990). Our laboratory recently identified this enzyme in the rat as the serine carboxylesterase ES-2 [F. Barr, H. Clark, and S. Hawgood. Am. J. Physiol. 274 (Lung Cell. Mol. Physiol. 18): L404-L410, 1998]. In the present study, we determined the cellular sites of expression of ES-2 in rat lung using a digoxygenin-labeled ES-2 riboprobe. ES-2 mRNA was localized to type II cells and alveolar macrophages but not to Clara cells. Using a specific ES-2 antibody, we determined the protein distribution of ES-2 in the lung by immunohistochemistry, and it was found to be consistent with the sites of mRNA expression. Most of the ES-2 in rat bronchoalveolar lavage is in the surfactant-depleted supernatant, but ES-2 was also consistently localized to the small vesicular surfactant subfraction presumed to form as a consequence of conversion activity. These results are consistent with a role for endogenous lung ES-2 in surfactant metabolism.  (+info)

Changes in surfactant-associated protein mRNA profile in growth-restricted fetal sheep. (51/31967)

To test the hypothesis that chronic placental insufficiency resulting in fetal growth restriction causes an increase in fetal lung surfactant-associated protein (SP) gene expression, we embolized chronically catheterized fetal sheep (n = 6) daily using nonradioactive microspheres in the abdominal aorta for 21 days (between 0.74 and 0.88 of gestation) until fetal arterial oxygen content was reduced by approximately 40-50%. Control animals (n = 7) received saline only. Basal fetal plasma cortisol concentration was monitored. At the end of the experiment, fetal lung tissues were collected, and ratios of tissue levels of SP-A, SP-B, and SP-C mRNA to 18S rRNA were determined by standard Northern blot analysis. Total DNA content of fetal lungs was reduced by 30% in the embolized group compared with control group (P = 0.01). There was a 2.7-fold increase in fetal lung SP-A mRNA (P < 0.05) and a 3.2-fold increase in SP-B mRNA (P < 0.01) in the chronically embolized group compared with those in the control group. SP-A and SP-B mRNA tissue levels were highly correlated with the mean fetal plasma cortisol levels on days 20-21 (r = 0.90, P < 0.01 for SP-A mRNA and r = 0.94, P < 0.01 for SP-B mRNA). SP-C mRNA tissue levels were not significantly affected by placental insufficiency. We conclude that fetal growth restriction due to placental insufficiency is associated with alterations in fetal lung SP, suggesting enhanced lung maturation that was highly dependent on the degree of increase in fetal plasma cortisol levels.  (+info)

Inducible NO synthase inhibition attenuates shear stress-induced pulmonary vasodilation in the ovine fetus. (52/31967)

Recent studies have suggested that type II (inducible) nitric oxide (NO) synthase (NOS II) is present in the fetal lung, but its physiological roles are uncertain. Whether NOS II activity contributes to the NO-mediated fall in pulmonary vascular resistance (PVR) during shear stress-induced pulmonary vasodilation is unknown. We studied the hemodynamic effects of two selective NOS II antagonists [aminoguanidine (AG) and S-ethylisothiourea (EIT)], a nonselective NOS antagonist [nitro-L-arginine (L-NNA)], and a nonselective vasoconstrictor (U-46619) on PVR during partial compression of the ductus arteriosus (DA) in 20 chronically prepared fetal lambs (mean age 132 +/- 2 days, term 147 days). At surgery, catheters were placed in the left pulmonary artery (LPA) for selective drug infusion, an ultrasonic flow transducer was placed on the LPA to measure blood flow, and an inflatable vascular occluder was placed loosely around the DA for compression. On alternate days, a brief intrapulmonary infusion of normal saline (control), AG, EIT, L-NNA, or U-46619 was infused in random order into the LPA. The DA was compressed to increase mean pulmonary arterial pressure (MPAP) 12-15 mmHg above baseline values and held constant for 30 min. In control studies, DA compression reduced PVR by 42% from baseline values (P < 0.01). L-NNA treatment completely blocked the fall in PVR during DA compression. AG and EIT attenuated the decrease in PVR by 30 and 19%, respectively (P < 0.05). Nonspecific elevation in PVR by U-46619 did not affect the fall in PVR during DA compression. Immunostaining for NOS II identified this isoform in airway epithelium and vascular smooth muscle in the late-gestation ovine fetal lung. We conclude that selective NOS II antagonists attenuate but do not block shear stress-induced vasodilation in the fetal lung. We speculate that stimulation of NOS II activity, perhaps from smooth muscle cells, contributes in part to the NO-mediated fall in PVR during shear stress-induced pulmonary vasodilation.  (+info)

Induction of thioredoxin and thioredoxin reductase gene expression in lungs of newborn primates by oxygen. (53/31967)

Thioredoxin (TRX) is a potent protein disulfide oxidoreductase important in antioxidant defense and regulation of cell growth and signal transduction processes, among them the production of nitric oxide. We report that lung TRX and its reductase, TR, are specifically upregulated at birth by O2. Throughout the third trimester, mRNAs for TRX and TR were expressed constitutively at low levels in fetal baboon lungs. However, after premature birth (125 or 140 of 185 days gestation), lung TRX and TR mRNAs increased rapidly with the onset of O2 or air breathing. Lung TRX mRNA also increased in lungs of term newborns with air breathing. Premature animals (140 days) breathing 100% O2 develop chronic lung disease within 7-14 days. These animals had greater TRX and TR mRNAs after 1, 6, or 10 days of life than fetal control animals. In 140-day animals given lesser O2 concentrations (as needed) who do not develop chronic lung disease, lung TRX and TR mRNAs were also increased on days 1 and 6 but not significantly on day 10. In fetal distal lung explant culture, mRNAs for TRX and TR were elevated within 4 h in 95% O2 relative to 1% O2, and the response was similar at various gestations. In contrast, TRX protein did not increase in lung explants from premature animals (125 or 140 days) but did in those from near-term (175-day) fetal baboons after exposure to hyperoxia. However, lung TRX protein and activity, as well as TR activity, eventually did increase in vivo in response to hyperoxia (6 days). Increases in TRX and TR mRNAs in response to 95% O2 also were observed in adult baboon lung explants. When TRX redox status was determined, increased O2 tension shifted TRX to its oxidized form. Treatment of lung explants with actinomycin D inhibited TRX and TR mRNA increases in 95% O2, indicating transcriptional regulation by O2. The acute increase in gene expression for both TRX and TR in response to O2 suggests an important role for these proteins during the transition from relatively anaerobic fetal life to O2 breathing at birth.  (+info)

Spirometric reference equations for older adults. (54/31967)

The objective of this study was to develop spirometric reference equations for healthy, never-smoking, older adults. It was designed as a cross-sectional observational study consisting of 1510 Seventh Day Adventists, ages 43-79 years enrolled in a study of health effects of air pollutants. Individuals were excluded from the reference group (n = 565) for a history of current respiratory illness, smoking, or chronic respiratory disease, and for a number of 'non-respiratory' conditions which were observed in these data to be related to lower values of FEV1. Gender-specific reference equations were developed for the entire reference group and for a subset above 65 years of age (n = 312). Controlling for height and age, lung function was found to be positively related to the difference between armspan and height, and in males was found to be quadratically related to age. The predicted values for this population generally fell within the range of those of other population groups containing large numbers of adults over the age of 65 years. Individuals with lung function below the 5th percentile in this sample, however, could not be reliably identified by using the lower limits of normal predictions commonly used in North America and Europe.  (+info)

Pneumonia in febrile neutropenic patients and in bone marrow and blood stem-cell transplant recipients: use of high-resolution computed tomography. (55/31967)

PURPOSE: To obtain statistical data on the use of high-resolution computed tomography (HRCT) for early detection of pneumonia in febrile neutropenic patients with unknown focus of infection. MATERIALS AND METHODS: One hundred eighty-eight HRCT studies were performed prospectively in 112 neutropenic patients with fever of unknown origin persisting for more than 48 hours despite empiric antibiotic treatment. Fifty-four of these studies were performed in transplant recipients. All patients had normal chest roentgenograms. If pneumonia was detected by HRCT, guided bronchoalveolar lavage was recommended. Evidence of pneumonia on chest roentgenograms during follow-up and micro-organisms detected during follow-up were regarded as documentation of pneumonia. RESULTS: Of the 188 HRCT studies, 112 (60%) showed pneumonia and 76 were normal. Documentation of pneumonia was possible in 61 cases by chest roentgenography or micro-organism detection (54%) (P < 10(-6)). Sensitivity of HRCT was 87% (88% in transplant recipients), specificity was 57% (67%), and the negative predictive value was 88% (97%). A time gain of 5 days was achieved by the additional use of HRCT compared to an exclusive use of chest roentgenography. CONCLUSION: The high frequency of inflammatory pulmonary disease after a suspicious HRCT scan (> 50%) proves that pneumonia is not excluded by a normal chest roentgenogram. Given the significantly longer duration of febrile episodes in transplant recipients, HRCT findings are particularly relevant in this subgroup. Patients with normal HRCT scans, particularly transplant recipients, have a low risk of pneumonia during follow-up. All neutropenic patients with fever of unknown origin and normal chest roentgenograms should undergo HRCT.  (+info)

Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. (56/31967)

Airway inflammation associated with asthma is characterized by massive infiltration of eosinophils, mediated in part by specific chemoattractant factors produced in the lung. Allergen-specific Th2 cells appear to play a central role in asthma; for example, adoptively transferred Th2 cells induced lung eosinophilia associated with induction of specific chemokines. Interestingly, Th2 supernatant alone administered intranasally to naive mice induced eotaxin, RANTES, monocyte-chemotactic protein-1, and KC expression along with lung eosinophilia. We tested the major cytokines individually and found that IL-4 and IL-5 induced higher levels of macrophage-inflammatory protein-1alpha and KC; IL-4 also increased the production of monocyte-chemotactic protein-1; IL-13 and IL-4 induced eotaxin. IL-13 was by far the most potent inducer of eotaxin; indeed, a neutralizing anti-IL-13 Ab removed most of the eotaxin-inducing activity from Th2 supernatants, although it did not entirely block the recruitment of eosinophils. While TNF-alpha did not stimulate eotaxin production by itself, it markedly augmented eotaxin induction by IL-13. IL-13 was able to induce eotaxin in the lung of JAK3-deficient mice, suggesting that JAK3 is not required for IL-13 signaling in airway epithelial cells; however, eosinophilia was not induced in this situation, suggesting that JAK3 transduces other IL-13-mediated mechanisms critical for eosinophil recruitment. Our study suggests that IL-13 is an important mediator in the pathogenesis of asthma and therefore a potential target for asthma therapy.  (+info)