Sex differences in the effects of early neocortical injury on neuronal size distribution of the medial geniculate nucleus in the rat are mediated by perinatal gonadal steroids. (1/8888)

Freezing injury to the cortical plate of rats induces cerebrocortical microgyria and, in males but not females, a shift toward greater numbers of small neurons in the medial geniculate nucleus (MGN). The purpose of the current study was to examine a hormonal basis for this sex difference. Cross-sectional neuronal areas of the MGN were measured in male rats, untreated female rats and female rats treated perinatally with testosterone propionate, all of which had received either neonatal cortical freezing or sham injury. Both male and androgenized female rats with microgyria had significantly smaller MGN neurons when compared to their sham-operated counterparts, whereas untreated females with microgyria did not. These differences were also reflected in MGN neuronal size distribution: both male and androgenized female rats with microgyria had more small and fewer large neurons in their MGN in comparison to shams, while there was no difference in MGN neuronal size distribution between lesioned and sham females. These findings suggest that perinatal gonadal steroids mediate the sex difference in thalamic response to induction of microgyria in the rat cortex.  (+info)

X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. (2/8888)

Expression of the X inactive-specific transcript (Xist) is thought to be essential for the initiation of X chromosome inactivation and dosage compensation during female embryo development. In the present study, we analyzed the patterns of Xist transcription and the onset of X chromosome inactivation in bovine preattachment embryos. Reverse transcription-polymerase chain reaction (RT-PCR) revealed the presence of Xist transcripts in all adult female somatic tissues evaluated. In contrast, among the male tissues examined, Xist expression was detected only in testis. No evidence for Xist transcription was observed after a single round of RT-PCR from pools of in vitro-derived embryos at the 2- to 4-cell stage. Xist transcripts were detected as a faint amplicon at the 8-cell stage initially, and consistently thereafter in all stages examined up to and including the expanded blastocyst stage. Xist transcripts, however, were subsequently detected from the 2-cell stage onward after nested RT-PCR. Preferential [3H]thymidine labeling indicative of late replication of one of the X chromosomes was noted in female embryos of different developmental ages as follows: 2 of 7 (28.5%) early blastocysts, 6 of 13 (46.1%) blastocysts, 8 of 11 (72.1%) expanded blastocysts, and 14 of 17 (77.7%) hatched blastocysts. These results suggest that Xist expression precedes the onset of late replication in the bovine embryo, in a pattern compatible with a possible role of bovine Xist in the initiation of X chromosome inactivation.  (+info)

BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. (3/8888)

New neurons are incorporated into the high vocal center (HVC), a nucleus of the adult canary (Serinus canaria) brain that plays a critical role in the acquisition and production of learned song. Recruitment of new neurons in the HVC is seasonally regulated and depends upon testosterone levels. We show here that brain-derived neurotrophic factor (BDNF) is present in the HVC of adult males but is not detectable in that of females, though the HVC of both sexes has BDNF receptors (TrkB). Testosterone treatment increases the levels of BDNF protein in the female HVC, and BDNF infused into the HVC of adult females triples the number of new neurons. Infusion of a neutralizing antibody to BDNF blocks the testosterone-induced increase in new neurons. Our results demonstrate that BDNF is involved in the regulation of neuronal replacement in the adult canary brain and suggest that the effects of testosterone are mediated through BDNF.  (+info)

Sexual dimorphism in white campion: complex control of carpel number is revealed by y chromosome deletions. (4/8888)

Sexual dimorphism in the dioecious plant white campion (Silene latifolia = Melandrium album) is under the control of two main regions on the Y chromosome. One such region, encoding the gynoecium-suppressing function (GSF), is responsible for the arrest of carpel initiation in male flowers. To generate chromosomal deletions, we used pollen irradiation in male plants to produce hermaphroditic mutants (bsx mutants) in which carpel development was restored. The mutants resulted from alterations in at least two GSF chromosomal regions, one autosomal and one located on the distal half of the (p)-arm of the Y chromosome. The two mutations affected carpel development independently, each mutation showing incomplete penetrance and variegation, albeit at significantly different levels. During successive meiotic generations, a progressive increase in penetrance and a reduction in variegation levels were observed and quantified at the level of the Y-linked GSF (GSF-Y). Possible mechanisms are proposed to explain the behavior of the bsx mutations: epigenetic regulation or/and second-site mutation of modifier genes. In addition, studies on the inheritance of the hermaphroditic trait showed that, unlike wild-type Y chromosomes, deleted Y chromosomes can be transmitted through both the male and the female lines. Altogether, these findings bring experimental support, on the one hand, to the existence on the Y chromosome of genic meiotic drive function(s) and, on the other hand, to models that consider that dioecy evolved through multiple mutation events. As such, the GSF is actually a system containing more than one locus and whose primary component is located on the Y chromosome.  (+info)

Sexual dimorphism in white campion: deletion on the Y chromosome results in a floral asexual phenotype. (5/8888)

White campion is a dioecious plant with heteromorphic X and Y sex chromosomes. In male plants, a filamentous structure replaces the pistil, while in female plants the stamens degenerate early in flower development. Asexual (asx) mutants, cumulating the two developmental defects that characterize the sexual dimorphism in this species, were produced by gamma ray irradiation of pollen and screening in the M1 generation. The mutants harbor a novel type of mutation affecting an early function in sporogenous/parietal cell differentiation within the anther. The function is called stamen-promoting function (SPF). The mutants are shown to result from interstitial deletions on the Y chromosome. We present evidence that such deletions tentatively cover the central domain on the (p)-arm of the Y chromosome (Y2 region). By comparing stamen development in wild-type female and asx mutant flowers we show that they share the same block in anther development, which results in the production of vestigial anthers. The data suggest that the SPF, a key function(s) controlling the sporogenous/parietal specialization in premeiotic anthers, is genuinely missing in females (XX constitution). We argue that this is the earliest function in the male program that is Y-linked and is likely responsible for "male dimorphism" (sexual dimorphism in the third floral whorl) in white campion. More generally, the reported results improve our knowledge of the structural and functional organization of the Y chromosome and favor the view that sex determination in this species results primarily from a trigger signal on the Y chromosome (Y1 region) that suppresses female development. The default state is therefore the ancestral hermaphroditic state.  (+info)

The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. (6/8888)

In this study the cross-sectional area (in n = 14 female controls, 15 male controls, 11 female patients with schizophrenia, 15 male patients with schizophrenia) and fibre composition (in n = 11 female controls, 10 male controls, 10 female patients with schizophrenia, 10 male patients with schizophrenia) of the corpus callosum in post-mortem control and schizophrenic brains was examined. A gender x diagnosis interaction (P = 0.005) was seen in the density of axons in all regions of the corpus callosum except the posterior midbody and splenium. Amongst controls, females had greater density than males; in patients with schizophrenia this difference was reversed. A reduction in the total number of fibres in all regions of the corpus callosum except the rostrum was observed in female schizophrenic patients (P = 0.006; when controlling for brain weight, P = 0.053). A trend towards a reduced cross-sectional area of the corpus callosum was seen in schizophrenia (P = 0.098); however, this is likely to be no more than a reflection of an overall reduction in brain size. With age, all subregions of the corpus callosum except the rostrum showed a significant reduction in cross-sectional area (P = 0.018) and total fibre number (P = 0.002). These findings suggest that in schizophrenia there is a subtle and gender-dependent alteration in the forebrain commissures that may relate to the deviations in asymmetry seen in other studies, but the precise anatomical explanation remains obscure.  (+info)

Canine sexual dimorphism in Egyptian Eocene anthropoid primates: Catopithecus and Proteopithecus. (7/8888)

Two very small late Eocene anthropoid primates, Catopithecus browni and Proteopithecus sylviae, from Fayum, Egypt show evidence of substantial sexual dimorphism in canine teeth. The degree of dimorphism suggests that these early anthropoids lived in social groups with a polygynous mating system and intense male-male competition. Catopithecus and Proteopithecus are smaller in estimated body size than any living primates showing canine dimorphism. The origin of canine dimorphism and polygyny in anthropoids was not associated with the evolution of large body size.  (+info)

Gender-specific differences in dialysis quality (Kt/V): 'big men' are at risk of inadequate haemodialysis treatment. (8/8888)

BACKGROUND: Inadequate dialysis dose is closely related to mortality and morbidity of maintenance haemodialysis (MHD) patients. According to the DOQI guidelines a minimum prescribed dialysis dose of single-pool Kt/V (Kt/Vsp)=1.3, equivalent to equilibrated double pool Kt/V (e-Kt/Vdp)=1.1, is recommended. Knowledge of patient-related risk factors for inadequate delivery of hacmodialysis would be helpful to select patient subgroups for intensive control ofdialysis adequacy. METHODS: A retrospective survey was conducted to assess the prevalence of inadequate dialysis dose according to DOQI criteria during a 7-month period. A total of 320 e-Kt/Vdp measurements in 62 MHD patients were evaluated (mean effective dialysis time 222+/-32 min). Residual renal function (RRF) was expressed as renal weekly Kt/V (r-Kt/Vweek) and included into assessment of total weekly renal and dialytic Kt/V (t-Kt/Vweek). RESULTS: Inadequacy (e-Kt/Vdp<1.10) was prevalent in 37.2% of all measurements and in 22/62 patients (35.5%). In 54% of underdialysed patients r-Kt/Vweek compensated for insufficient dialytic urea removal. Mean weekly Kt/V was inadequate (t-Kt/Vweek<3.30) in 12/62 patients (19.4%) of whom 91.7% (11/12) were male. Body-weight, urea distribution volume (UDV). and body-surface area (BSA) were significantly higher in inadequately is adequately dialysed males. UDV>42.0 litres or BSA>2.0 m2 and a lack of RRF (r-Kt/Vweek<0.3) put 'big men' at increased risk to receive an inadequate dose of dialysis. CONCLUSION: Our data identify patients at risk for inadequate haemodialysis treatment. Special attention should be focused on 'big men' with UDV>42.0 litres or BSA>2.0 m2. In this subset of patients frequent measurements of t-Kt/Vweek and assessment of RRF should be mandatory.  (+info)