Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. (1/51)

To facilitate the biochemical characterization of chromatin-associated proteins in the budding yeast Saccharomyces cerevisiae, we have developed a system to assemble nucleosomal arrays on immobilized templates using recombinant yeast core histones. This system enabled us to analyze the interaction of Isw2 ATP-dependent chromatin remodeling complex with nucleosomal arrays. We found that Isw2 complex interacts efficiently with both naked DNA and nucleosomal arrays in an ATP-independent manner, suggesting that ATP is required at steps subsequent to this physical interaction. We identified the second subunit of Isw2 complex, encoded by open reading frame YGL 133w (herein named ITC1), and found that both subunits of the complex, Isw2p and Itc1p, are essential for efficient interaction with DNA and nucleosomal arrays. Both subunits are also required for nucleosome-stimulated ATPase activity and chromatin remodeling activity of the complex. Finally, we found that ITC1 is essential for function of Isw2 complex in vivo, since isw2 and itc1 deletion mutants exhibit virtually identical phenotypes. These results demonstrate the utility of our in vitro system in studying interactions between chromatin-associated proteins and nucleosomal arrays.  (+info)

The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. (2/51)

The conserved heterochromatic location of centromeres in higher eukaryotes suggests that intrinsic properties of heterochromatin are important for chromosome inheritance. Based on this hypothesis, mutations in Drosophila melanogaster that alter heterochromatin-induced gene silencing were tested for effects on chromosome inheritance. Here we describe the characterization of the Su(var)2-10 locus, initially identified as a Suppressor of Position-Effect Variegation. Su(var)2-10 is required for viability, and mutations cause both minichromosome and endogenous chromosome inheritance defects. Mitotic chromosomes are improperly condensed in mutants, and polytene chromosomes are structurally abnormal and disorganized in the nucleus. Su(var)2-10 encodes a member of the PIAS protein family, a group of highly conserved proteins that control diverse functions. SU(VAR)2-10 proteins colocalize with nuclear lamin in interphase, and little to no SU(VAR)2-10 is found on condensed mitotic chromosomes. SU(VAR)2-10 is present at some polytene chromosome telomeres, and FISH analyses in mutant polytene nuclei revealed defects in telomere clustering and telomere-nuclear-lamina associations. We propose that Su(var2-10 controls multiple aspects of chromosome structure and function by establishing/maintaining chromosome organization in interphase nuclei.  (+info)

Genome sequence of the human malaria parasite Plasmodium falciparum. (3/51)

The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.  (+info)

A role of topoisomerase II in linking DNA replication to chromosome condensation. (4/51)

The condensin complex and topoisomerase II (topo II) have different biochemical activities in vitro, and both are required for mitotic chromosome condensation. We have used Xenopus egg extracts to investigate the functional interplay between condensin and topo II in chromosome condensation. When unreplicated chromatin is directly converted into chromosomes with single chromatids, the two proteins must function together, although they are independently targeted to chromosomes. In contrast, the requirement for topo II is temporarily separable from that of condensin when chromosome assembly is induced after DNA replication. This experimental setting allows us to find that, in the absence of condensin, topo II becomes enriched in an axial structure within uncondensed chromatin. Subsequent addition of condensin converts this structure into mitotic chromosomes in an ATP hydrolysis-dependent manner. Strikingly, preventing DNA replication by the addition of geminin or aphidicolin disturbs the formation of topo II-containing axes and alters the binding property of topo II with chromatin. Our results suggest that topo II plays an important role in an early stage of chromosome condensation, and that this function of topo II is tightly coupled with prior DNA replication.  (+info)

Microtubule distribution during meiosis I in flea-beetle [Alagoasa (Oedionychus)] spermatocytes: evidence for direct connections between unpaired sex chromosomes. (5/51)

The meiosis-I spindle in flea-beetle spermatocytes is unusual in that the autosomes and univalent sex chromosomes are separated by a mitochondrial sheath and move polewards at different times. To help understand the basis for this interesting chromosome behaviour, and to gather more detailed information about it, we studied microtubule distributions throughout meiosis I using immunofluorescence and confocal microscopy, and took careful measurements of pole and kinetochore positions at all stages of division. Our results show that, by late prophase, there is a spindle-shaped cytoplasmic array of microtubules in the central part of the cell, with the nucleus at the periphery. Following nuclear envelope breakdown, both autosomes and sex chromosomes become associated with cytoplasmic microtubules, although only the autosomes move centrally to the 'cytoplasmic spindle'. The two unpaired sex chromosomes remain at the cell periphery and appear to be connected to each other by a microtubule bundle extending between their kinetochores. These bundles often persist into anaphase. Analysis of measurements taken from fixed/stained cells supports previous observations that sex chromosomes move part way to the pole in early prometaphase and then stop. The measurements also suggest that during autosomal anaphase, spindle elongation precedes autosome movement to the poles and polewards movement of sex chromosomes is limited or absent when autosomes are moving polewards.  (+info)

Engineered chromosome regions with altered sequence composition demonstrate hierarchical large-scale folding within metaphase chromosomes. (6/51)

Mitotic chromosome structure and DNA sequence requirements for normal chromosomal condensation remain unknown. We engineered labeled chromosome regions with altered scaffold-associated region (SAR) sequence composition as a formal test of the radial loop and other chromosome models. Chinese hamster ovary cells were isolated containing high density insertions of a transgene containing lac operator repeats and a dihydrofolate reductase gene, with or without flanking SAR sequences. Lac repressor staining provided high resolution labeling with good preservation of chromosome ultrastructure. No evidence emerged for differential targeting of SAR sequences to a chromosome axis within native chromosomes. SAR sequences distributed uniformly throughout the native chromosome cross section and chromosome regions containing a high density of SAR transgene insertions showed normal diameter and folding. Ultrastructural analysis of two different transgene insertion sites, both spanning less than the full chromatin width, clearly contradicted predictions of simple radial loop models while providing strong support for hierarchical models of chromosome architecture. Specifically, an approximately 250-nm-diam folding subunit was visualized directly within fully condensed metaphase chromosomes. Our results contradict predictions of simple radial loop models and provide the first unambiguous demonstration of a hierarchical folding subunit above the level of the 30-nm fiber within normally condensed metaphase chromosomes.  (+info)

Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. (7/51)

Posttranslational modifications of core histones contribute to driving changes in chromatin conformation and compaction. Herein, we investigated the role of histone deacetylation on the mitotic process by inhibiting histone deacetylases shortly before mitosis in human primary fibroblasts. Cells entering mitosis with hyperacetylated histones displayed altered chromatin conformation associated with decreased reactivity to the anti-Ser 10 phospho H3 antibody, increased recruitment of protein phosphatase 1-delta on mitotic chromosomes, and depletion of heterochromatin protein 1 from the centromeric heterochromatin. Inhibition of histone deacetylation before mitosis produced defective chromosome condensation and impaired mitotic progression in living cells, suggesting that improper chromosome condensation may induce mitotic checkpoint activation. In situ hybridization analysis on anaphase cells demonstrated the presence of chromatin bridges, which were caused by persisting cohesion along sister chromatid arms after centromere separation. Thus, the presence of hyperacetylated chromatin during mitosis impairs proper chromosome condensation during the pre-anaphase stages, resulting in poor sister chromatid resolution. Lagging chromosomes consisting of single or paired sisters were also induced by the presence of hyperacetylated histones, indicating that the less constrained centromeric organization associated with heterochromatin protein 1 depletion may promote the attachment of kinetochores to microtubules coming from both poles.  (+info)

Clustering of multiple specific genes and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods. (8/51)

Typically, eukaryotic nuclei contain 10-30 prominent domains (referred to here as SC-35 domains) that are concentrated in mRNA metabolic factors. Here, we show that multiple specific genes cluster around a common SC-35 domain, which contains multiple mRNAs. Nonsyntenic genes are capable of associating with a common domain, but domain "choice" appears random, even for two coordinately expressed genes. Active genes widely separated on different chromosome arms associate with the same domain frequently, assorting randomly into the 3-4 subregions of the chromosome periphery that contact a domain. Most importantly, visualization of six individual chromosome bands showed that large genomic segments ( approximately 5 Mb) have striking differences in organization relative to domains. Certain bands showed extensive contact, often aligning with or encircling an SC-35 domain, whereas others did not. All three gene-rich reverse bands showed this more than the gene-poor Giemsa dark bands, and morphometric analyses demonstrated statistically significant differences. Similarly, late-replicating DNA generally avoids SC-35 domains. These findings suggest a functional rationale for gene clustering in chromosomal bands, which relates to nuclear clustering of genes with SC-35 domains. Rather than random reservoirs of splicing factors, or factors accumulated on an individual highly active gene, we propose a model of SC-35 domains as functional centers for a multitude of clustered genes, forming local euchromatic "neighborhoods."  (+info)