Regulation of complement activation by C-reactive protein: targeting the complement inhibitory activity of factor H by an interaction with short consensus repeat domains 7 and 8-11. (1/204)

C-reactive protein (CRP) is a major acute phase protein whose functions are not totally clear. In this study, we examined the interaction of CRP with factor H (FH), a key regulator of the alternative pathway (AP) of complement. Using the surface plasmon resonance technique and a panel of recombinantly expressed FH constructs, we observed that CRP binds to two closely located regions on short consensus repeat (SCR) domains 7 and 8-11 of FH. Also FH-like protein 1 (FHL-1), an alternatively spliced product of the FH gene, bound to CRP with its most C-terminal domain (SCR 7). The binding reactions were calcium-dependent and partially inhibited by heparin. In accordance with the finding that CRP binding sites on FH were distinct from the C3b binding sites, CRP preserved the ability of FH to promote factor I-mediated cleavage of C3b. We propose that the function of CRP is to target functionally active FH and FHL-1 to injured self tissues. Thereby, CRP could restrict excessive complement attack in tissues while allowing a temporarily enhanced AP activity against invading microbes in blood.  (+info)

Complement activation in patients with systemic lupus erythematosus without nephritis. (2/204)

OBJECTIVE: To study the association between disease activity and complement activation prospectively in patients with systemic lupus erythematosus (SLE). PATIENTS AND METHODS: Twenty-one SLE patients were examined monthly for 1 yr. Disease activity, autoantibodies, conventional complement tests and the following complement activation products were investigated: C1rs-C1inh complexes, C4bc, Bb, C3a, C3bc, C5a and the terminal SC5b-9 complement complex (TCC). RESULTS: Modest variation in disease activity was noted. None of the patients had nephritis. Flare was observed at 27 visits. Four patients had anti-C1q antibodies in conjunction with modestly low C1q concentrations. The complement parameters were rather constant during the observation period. Slightly to moderately decreased C4 (0.05-0.10 g/l) was found in 10 patients and severely decreased C4 (<0.05 g/l) in seven patients. Decreased C4 was not associated with increased complement activation. Complement activation products were either normal or slightly elevated. TCC was the only activation product correlating significantly with score for disease activity at flare. None of the variables tested predicted flares. CONCLUSION: Complement tests are of limited importance in routine examination of SLE without nephritis, although TCC is suggested to be one of the most sensitive markers for disease activity.  (+info)

Different regulation of factor H and FHL-1/reconectin by inflammatory mediators and expression of the two proteins in rheumatoid arthritis (RA). (3/204)

Factor H and the FHL-1/reconectin protein are two human plasma proteins that act as important regulators of the alternative complement pathway. Each protein is encoded by a unique transcript, but both mRNAs are derived from the factor H gene by means of alternative processing. In order to address potential functional differences between the two proteins we analysed their expression in hepatic and non-hepatic cells and studied their regulation by inflammatory mediators. We demonstrate that factor H and FHL-1/reconectin transcripts which are regulated by the same gene promoter and are initiated at the same transcription start site are differently expressed. Expression of the molecules is induced and regulated by the inflammatory mediators interferon-gamma (IFN-gamma) and the anti-inflammatory glucocorticoid dexamethasone. Both factor H and FHL-1/reconectin are expressed and secreted by synovial fibroblasts and are present in synovial fluid derived from patients suffering from rheumatoid or reactive arthritis. The local synthesis in synovial fibroblasts and their induction by IFN-gamma and dexamethasone, but not by tumour necrosis factor-alpha, suggests for each of the two complement regulators a protective role in RA.  (+info)

Structure-guided identification of C3d residues essential for its binding to complement receptor 2 (CD21). (4/204)

A vital role for complement in adaptive humoral immunity is now beyond dispute. The crucial interaction is that between B cell and follicular dendritic cell-resident complement receptor 2 (CR2, CD21) and its Ag-associated ligands iC3b and C3dg, where the latter have been deposited as a result of classical pathway activation. Despite the obvious importance of this interaction, the location of a CR2 binding site within C3d, a proteolytic limit fragment of C3dg retaining CR2 binding activity, has not been firmly established. The recently determined x-ray structure of human C3d suggested a candidate site that was remote from the site of covalent attachment to Ag and consisted of an acidic residue-lined depression, which accordingly displays a significant electronegative surface potential. These attributes were consistent with the known ionic strength dependence of the CR2-C3d interaction and with the fact that a significant electropositive surface was apparent in a modeled structure of the C3d-binding domains of CR2. Therefore, we have performed an alanine scan of all of the residues within and immediately adjacent to the acidic pocket in C3d. By testing the mutant iC3b molecules for their ability to bind CR2, we have identified two separate clusters of residues on opposite sides of the acidic pocket, specifically E37/E39 and E160/D163/I164/E166, as being important CR2-contacting residues in C3d. Within the second cluster even single mutations cause near total loss of CR2 binding activity. Consistent with the proposed oppositely charged nature of the interface, we have also found that removal of a positive charge immediately adjacent to the acidic pocket (mutant K162A) results in a 2-fold enhancement in CR2 binding activity.  (+info)

Cooperation between decay-accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack. (5/204)

Decay-accelerating factor (DAF or CD55) and membrane cofactor protein (MCP or CD46) function intrinsically in the membranes of self cells to prevent activation of autologous complement on their surfaces. How these two regulatory proteins cooperate on self-cell surfaces to inhibit autologous complement attack is unknown. In this study, a GPI-anchored form of MCP was generated. The ability of this recombinant protein and that of naturally GPI-anchored DAF to incorporate into cell membranes then was exploited to examine the combined functions of DAF and MCP in regulating complement intermediates assembled from purified alternative pathway components on rabbit erythrocytes. Quantitative studies with complement-coated rabbit erythrocyte intermediates constituted with each protein individually or the two proteins together demonstrated that DAF and MCP synergize the actions of each other in preventing C3b deposition on the cell surface. Further analyses showed that MCP's ability to catalyze the factor I-mediated cleavage of cell-bound C3b is inhibited in the presence of factors B and D and is restored when DAF is incorporated into the cells. Thus, the activities of DAF and MCP, when present together, are greater than the sum of the two proteins individually, and DAF is required for MCP to catalyze the cleavage of cell-bound C3b in the presence of excess factors B and D. These data are relevant to xenotransplantation, pharmacological inhibition of complement in inflammatory diseases, and evasion of tumor cells from humoral immune responses.  (+info)

The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. (6/204)

Spirochete bacteria of the Borrelia burgdorferi sensu lato complex cause Lyme borreliosis. The three pathogenic subspecies Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto differ in their disease profiles and susceptibility to complement lysis. We investigated whether complement resistance of Borreliae could be due to acquisition of the main soluble inhibitors of the alternative complement pathway, factor H and the factor H-like protein 1. When exposed to nonimmune EDTA-plasma, the serum-resistant B. afzelii and B. burgdorferi sensu stricto strains bound factor H/factor H-like protein 1 to their surfaces. Assays with radiolabeled proteins showed that factor H bound strongly to the B. burgdorferi sensu stricto strain. To identify factor H ligands on the borrelial surface, we analyzed a panel of outer surface proteins of B. burgdorferi sensu stricto with the surface plasmon resonance technique. The outer surface lipoprotein OspE was identified as a specific ligand for factor H. Using recombinant constructs of factor H, the binding site for OspE was localized to the C-terminal short consensus repeat domains 15-20. Specific binding of factor H to B. burgdorferi sensu stricto OspE may help the pathogen to evade complement attack and phagocytosis.  (+info)

Complement evasion by Borrelia burgdorferi: serum-resistant strains promote C3b inactivation. (7/204)

The most characteristic features of the Lyme disease pathogens, the Borrelia burgdorferi sensu lato (s.l.) group, are their ability to invade tissues and to circumvent the immune defenses of the host for extended periods of time, despite elevated levels of borrelia-specific antibodies in serum and other body fluids. Our aim in the present study was to determine whether B. burgdorferi is able to interfere with complement (C) at the level of C3 by accelerating C3b inactivation and thus to inhibit the amplification of the C cascade. Strains belonging to different genospecies (Borrelia garinii, B. burgdorferi sensu stricto, and Borrelia afzelii) were compared for their sensitivities to normal human serum and abilities to promote factor I-mediated C3b degradation. B. burgdorferi sensu stricto and B. afzelii strains were found to be serum resistant. When the spirochetes were incubated with radiolabeled C3b, factor I-mediated degradation of C3b was observed in the presence of C-resistant B. afzelii (n = 3) and B. burgdorferi sensu stricto (n = 1) strains but not in the presence of C-sensitive B. garinii (n = 7) strains or control bacteria (Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis). Immunoblotting and radioligand binding analyses showed that the C-resistant strains had the capacity to acquire the C inhibitors factor H and factor H-like protein 1 (FHL-1) from growth medium and human serum. A novel surface protein with an apparent molecular mass of 35 kDa was found to preferentially bind to the N terminus region of factor H. Thus, the serum-resistant B. burgdorferi s.l. strains can circumvent C attack by binding the C inhibitors factor H and FHL-1 to their surfaces and promoting factor I-mediated C3b degradation.  (+info)

Relative importance of C3b inactivator and beta 1H globulin in the modulation of the properdin amplification loop in systemic lupus erythematosus. (8/204)

Serum concentrations of C4, C3, factor B (B), properdin (P), C3b inactivator (C3bINA) and beta 1H globulin have been measured by radial immunodiffusion in sixty-two samples from thirteen patients with systemic lupus erythematosus (SLE). Significant reductions in the mean serum concentrations of C4 (classical pathway) B and P (alternative pathway) and C3 were found. In addition, the mean level of the control protein beta 1H, but not C3bINA, was reduced. Sera from thirteen patients taking during disease exacerbation (low C3) showed significantly lower levels of both C3bINA and beta 1H than sera taken from the same thirteen patients during disease remission (high C3). Serum concentrations of C3bINA correlated with B (P less than 0.005) but not C4, C3 or P, whereas levels of beta 1H correlated with C4 (P less than 0.01), B (P less than 0.005) and properdin (P less than 0.01). Serial measurements of the serum concentrations of C3bINA and beta 1H showed that levels of these protein fell during exacerbation, and such falls were more closely associated with diseases in the serum levels of the alternative pathways proteins than C4. It is concluded from these observations that serum concentrations of the control proteins C3bINA and beta 1H, especially the latter, control the extent of turnover of the alternative pathway in SLE. Metabolic studies are required to determine the causes of the decreased serum concentrations of these control proteins.  (+info)