Influence of fibrillar collagen structure on the mechanisms of platelet thrombus formation under flow. (25/348)

We have used real-time video microscopy to study the mechanisms of platelet adhesion to type I collagen fibrils of distinct structure exposed to flowing blood. Electron microscopy analysis by surface replication demonstrated morphological differences between acid-insoluble fibrils, displaying a regularly repeating striated pattern (banded collagen), and acid-soluble fibrils generated by pepsin treatment of insoluble collagen, smaller in size with a helical configuration (nonbanded collagen). These structural differences proved to be related to the role of platelet integrin alpha(2)beta(1) in stabilizing adhesion to collagen under a variety of flow conditions. Blocking alpha(2)beta(1) function with a monoclonal antibody had no effect on platelet adhesion to insoluble type I collagen coated at high density on a glass surface, whereas there was an absolute dependence of alpha(2)beta(1) function for the initial permanent arrest of platelets and subsequent thrombus formation on pepsin-solubilized type I collagen under the same conditions. In contrast, reconstituted, banded fibrils prepared from pepsin-solubilized type I collagen supported platelet adhesion and thrombus development even when platelet alpha(2)beta(1) function was blocked, a process that was greatly accelerated by pre-exposure of this substrate to autologous plasma under flow. These results implicate a collagen receptor(s) on platelets other than alpha(2)beta(1) that can selectively engage domains in banded, but not nonbanded type I collagen when alpha(2)beta(1) function is blocked. In addition, collagen structure may regulate the extent and affinity of the binding under flow of plasma components such as von Willebrand factor and/or other alpha(IIb)beta(3) ligands.  (+info)

Integrin-associated protein stimulates alpha2beta1-dependent chemotaxis via Gi-mediated inhibition of adenylate cyclase and extracellular-regulated kinases. (26/348)

Integrin-associated protein (IAP/CD47) augments the function of alpha2beta1 integrin in smooth muscle cells (SMC), resulting in enhanced chemotaxis toward soluble collagen (Wang, X-Q., and W.A. Frazier. 1998. Mol. Biol. Cell. 9:865). IAP-deficient SMC derived from IAP(-/-) animals did not migrate in response to 4N1K (KRFYVVMWKK), a peptide agonist of IAP derived from the COOH-terminal domain of thrombospondin-1 (TSP1). When normal SMC were preincubated with 4N1K or an anti-alpha2beta1 function-stimulating antibody, cell migration to soluble collagen was significantly enhanced. 4N1K-induced chemotaxis was blocked by treatment of SMC with pertussis toxin indicating that IAP acts through Gi. In agreement with this, 4N1K evoked a rapid decrease in cAMP levels which was intensified in the presence of collagen, and forskolin and 8-Br-cAMP both inhibited SMC migration stimulated via IAP. 4N1K strongly inhibited extracellular regulated kinase (ERK) activation in SMC attaching to collagen and reduced basal ERK activity in suspended SMC. Pertussis toxin treatment of SMC significantly activated ERK, suggesting that an inhibitory input was alleviated. Inhibition of ERK activity by (a) the MAP kinase kinase (MEK) inhibitor, PD98059, (b) antisense oligonucleotide depletion of ERK, and (c) expression of mitogen-activated protein (MAP) kinase phosphatase-1 in SMC all led to increased migration to collagen, 4N1K, or 4N1K plus collagen. Thus, IAP stimulates alpha2beta1 integrin-mediated SMC migration via Gi-mediated inhibition of ERK activity and suppression of cyclic AMP levels. Both of these signaling pathways could directly modulate the state of the integrin as well as impact downstream components of the cell motility apparatus.  (+info)

Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. (27/348)

Two collagen receptors, integrins alpha1beta1 and alpha2beta1, can regulate distinct functions in cells. Ligation of alpha1beta1, unlike alpha2beta1, has been shown to result in recruitment of Shc and activation of the Ras/ERK pathway. To identify the downstream signaling molecules activated by alpha2beta1 integrin, we have overexpressed wild-type alpha2, or chimeric alpha2 subunit with alpha1 integrin cytoplasmic domain in human osteosarcoma cells (Saos-2) lacking endogenous alpha2beta1. The chimeric alpha2/alpha1 chain formed a functional heterodimer with beta1. In contrast to alpha2/alpha1 chimera, forced expression of alpha2 integrin resulted in upregulation of alpha1 (I) collagen gene transcription in response to three-dimensional collagen, indicating that the cytoplasmic domain of alpha2 integrin was required for signaling. Furthermore, signals mediated by alpha2beta1 integrin specifically activated the p38alpha isoform, and selective p38 inhibitors blocked upregulation of collagen gene transcription. Dominant negative mutants of Cdc42, MKK3, and MKK4 prevented alpha2beta1 integrin-mediated activation of p38alpha. RhoA had also some inhibitory effect, whereas dominant negative Rac was not effective. Our findings show the isoform-specific activation of p38 by alpha2beta1 integrin ligation and identify Cdc42, MKK3, and MKK4 as possible downstream effectors. These observations reveal a novel signaling mechanism of alpha2beta1 integrin that is distinct from ones previously described for other integrins.  (+info)

"RKKH" peptides from the snake venom metalloproteinase of Bothrops jararaca bind near the metal ion-dependent adhesion site of the human integrin alpha(2) I-domain. (28/348)

Integrin alpha(1)beta(1) and alpha(2)beta(1) are the major cellular receptors for collagen, and collagens bind to these integrins at the inserted I-domain in their alpha subunit. We have previously shown that a cyclic peptide derived from the metalloproteinase domain of the snake venom protein jararhagin blocks the collagen-binding function of the alpha(2) I-domain. Here, we have optimized the structure of the peptide and identified the site where the peptide binds to the alpha(2) I-domain. The peptide sequence Arg-Lys-Lys-His is critical for recognition by the I-domain, and five negatively charged residues surrounding the "metal ion-dependent adhesion site" (MIDAS) of the I-domain, when mutated, show significantly impaired binding of the peptide. Removal of helix alphaC, located along one side of the MIDAS and suggested to be involved in collagen-binding in these I-domains, does not affect peptide binding. This study supports the notion that the metalloproteinase initially binds to the alpha(2) I-domain at a location distant from the active site of the protease, thus blocking collagen binding to the adhesion molecule in the vicinity of the MIDAS, while at the same time leaving the active site free to degrade nearby proteins, the closest being the beta(1) subunit of the alpha(2)beta(1) cell-surface integrin itself.  (+info)

Interaction between collagen and the alpha(2) I-domain of integrin alpha(2)beta(1). Critical role of conserved residues in the metal ion-dependent adhesion site (MIDAS) region. (29/348)

A docking model of the alpha(2) I-domain and collagen has been proposed based on their crystal structures (Emsley, J., King, S., Bergelson, J., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517). In this model, several amino acid residues in the I-domain make direct contact with collagen (Asn-154, Asp-219, Leu-220, Glu-256, His-258, Tyr-285, Asn-289, Leu-291, Asn-295, and Lys-298), and the protruding C-helix of alpha(2) (residues 284-288) determines ligand specificity. Because most of the proposed critical residues are not conserved, different I-domains are predicted to bind to collagen differently. We found that deleting the entire C-helix or mutating the predicted critical residues had no effect on collagen binding to whole alpha(2)beta(1), with the exception that mutating Asn-154, Asp-219, and His-258 had a moderate effect. We performed further studies and found that mutating the conserved surface-exposed residues in the metal ion-dependent adhesion site (MIDAS) (Tyr-157 and Gln-215) significantly blocks collagen binding. We have revised the docking model based on the mutagenesis data. In the revised model, conserved Tyr-157 makes contact with collagen in addition to the previously proposed Asn-154, Asp-219, His-258, and Tyr-285 residues. These results suggest that the collagen-binding I-domains (e.g. alpha(1), alpha(2), and alpha(10)) bind to collagen in a similar fashion.  (+info)

Determinants of ligand binding specificity of the alpha(1)beta(1) and alpha(2)beta(1) integrins. (30/348)

The alpha(1)beta(1) and alpha(2)beta(1) integrins are cell surface collagen receptors. Cells expressing the alpha(1)beta(1) integrin preferentially adhere to collagen IV, whereas cells expressing the alpha(2)beta(1) integrin preferentially adhere to collagen I. Recombinant alpha(1) and alpha(2) integrin I domains exhibit the same collagen type preferences as the intact integrins. In addition, the alpha(2) integrin I domain binds echovirus 1; the alpha(1) I domain does not. To identify the structural components of the I domains responsible for the varying ligand specificities, we have engineered several alpha(1)/alpha(2) integrin I domain chimeras and evaluated their virus and collagen binding activities. Initially, large secondary structural components of the alpha(2) I domain were replaced with corresponding regions of the alpha(1) I domain. Following analysis in echovirus 1 and collagen binding assays, chimeras with successively smaller regions of alpha(1) I were constructed and analyzed. The chimeras were analyzed by ELISA with several different alpha(2) integrin monoclonal antibodies to assess their proper folding. Three different regions of the alpha(1) I domain, when present in the alpha(2) I domain, conferred enhanced collagen IV binding activity upon the alpha(2) I domain. These include the alpha3 and alpha5 helices and a portion of the alpha6 helix. Echovirus 1 binding was lost in a chimera containing the alphaC-alpha6 loop; higher resolution mapping identified Asn(289) as playing a critical role in echovirus 1 binding. Asn(289) had not been implicated in previous echovirus 1 binding studies. Taken together, these data reveal the existence of multiple determinants of ligand binding specificities within the alpha(1) and alpha(2) integrin I domains.  (+info)

Degraded collagen fragments promote rapid disassembly of smooth muscle focal adhesions that correlates with cleavage of pp125(FAK), paxillin, and talin. (31/348)

Active matrix metalloproteinases and degraded collagen are observed in disease states, such as atherosclerosis. To examine whether degraded collagen fragments have distinct effects on vascular smooth muscle cells (SMC), collagenase-digested type I collagen was added to cultured human arterial SMC. After addition of collagen fragments, adherent SMC lose their focal adhesion structures and round up. Analysis of components of the focal adhesion complex demonstrates rapid cleavage of the focal adhesion kinase (pp125(FAK)), paxillin, and talin. Cleavage is suppressed by inhibitors of the proteolytic enzyme, calpain I. In vitro translated pp125(FAK) is a substrate for both calpain I- and II-mediated processing. Mapping of the proteolytic cleavage fragments of pp125(FAK) predicts a dissociation of the focal adhesion targeting (FAT) sequence and second proline-rich domain from the tyrosine kinase domain and integrin-binding sequence. Coimmunoprecipitation studies confirm that the ability of pp125(FAK) to associate with paxillin, vinculin, and p130cas is significantly reduced in SMC treated with degraded collagen fragments. Further, there is a significant reduction in the association of intact pp125(FAK) with the cytoskeletal fraction, while pp125(FAK) cleavage fragments appear in the cytoplasm in SMC treated with degraded collagen fragments. Integrin-blocking studies indicate that integrin-mediated signals are involved in degraded collagen induction of pp125(FAK) cleavage. Thus, collagen fragments induce distinct integrin signals that lead to initiation of calpain-mediated cleavage of pp125(FAK), paxillin, and talin and dissolution of the focal adhesion complex.  (+info)

LAT is required for tyrosine phosphorylation of phospholipase cgamma2 and platelet activation by the collagen receptor GPVI. (32/348)

In the present study, we have addressed the role of the linker for activation of T cells (LAT) in the regulation of phospholipase Cgamma2 (PLCgamma2) by the platelet collagen receptor glycoprotein VI (GPVI). LAT is tyrosine phosphorylated in human platelets heavily in response to collagen, collagen-related peptide (CRP), and FcgammaRIIA cross-linking but only weakly in response to the G-protein-receptor-coupled agonist thrombin. LAT tyrosine phosphorylation is abolished in CRP-stimulated Syk-deficient mouse platelets, whereas it is not altered in SLP-76-deficient mice or Btk-deficient X-linked agammaglobulinemia (XLA) human platelets. Using mice engineered to lack the adapter LAT, we showed that tyrosine phosphorylation of Syk and Btk in response to CRP was maintained in LAT-deficient platelets whereas phosphorylation of SLP-76 was slightly impaired. In contrast, tyrosine phosphorylation of PLCgamma2 was substantially reduced in LAT-deficient platelets but was not completely inhibited. The reduction in phosphorylation of PLCgamma2 was associated with marked inhibition of formation of phosphatidic acid, a metabolite of 1,2-diacylglycerol, phosphorylation of pleckstrin, a substrate of protein kinase C, and expression of P-selectin in response to CRP, whereas these parameters were not altered in response to thrombin. Activation of the fibrinogen receptor integrin alpha(IIb)beta(3) in response to CRP was also reduced in LAT-deficient platelets but was not completely inhibited. These results demonstrate that LAT tyrosine phosphorylation occurs downstream of Syk and is independent of the adapter SLP-76, and they establish a major role for LAT in the phosphorylation and activation of PLCgamma2, leading to downstream responses such as alpha-granule secretion and activation of integrin alpha(IIb)beta(3). The results further demonstrate that the major pathway of tyrosine phosphorylation of SLP-76 is independent of LAT and that there is a minor, LAT-independent pathway of tyrosine phosphorylation of PLCgamma2. We propose a model in which LAT and SLP-76 are required for PLCgamma2 phosphorylation but are regulated through independent pathways downstream of Syk.  (+info)