MMP-20 is predominately a tooth-specific enzyme with a deep catalytic pocket that hydrolyzes type V collagen. (25/105)

Matrix metalloproteinase-20 (MMP-20, enamelysin) has a highly restricted pattern of expression. In healthy tissues, MMP-20 is observed in the enamel organ and pulp organ of developing teeth and is present only as an activated enzyme. To identify other tissues that may express MMP-20, we performed a systematic mouse tissue expression screen. Among the non-tooth tissues assayed, MMP-20 transcripts were identified only in minute quantities within the large intestine. The murine Mmp20 promoter was cloned, sequenced, and assessed for potential tooth-specific regulatory elements. In silico analysis identified four promoter modules that were common to Mmp20 and at least two of three coregulated predominantly tooth-specific genes that encode ameloblastin, amelogenin, and enamelin. We asked if the highly restricted MMP-20 expression pattern was associated with a broad substrate specificity that might preclude its expression in other tissues. An iterative mixture-based random doedecamer peptide library screen with Edman sequencing of MMP-20 cleavage products revealed that, among MMPs previously screened, MMP-20 had unique substrate preferences. These preferences indicate that MMP-20 has a deep and wide catalytic pocket that can accommodate substrates with large aromatic residues in the P1' position. On the basis of matrices derived from the peptide library data, we identified and then confirmed that type V collagen is an MMP-20 substrate. Since type V collagen is not present in dental enamel but is an otherwise widely distributed collagen, and since only active MMP-20 has been observed in teeth, our data suggest that control of MMP-20 activity is primarily regulated by transcriptional means.  (+info)

Structural requirements for heparin/heparan sulfate binding to type V collagen. (26/105)

Collagen-proteoglycan interactions participate in the regulation of matrix assembly and in cell-matrix interactions. We reported previously that a fragment (Ile824-Pro950) of the collagen alpha1(V) chain, HepV, binds to heparin via a cluster of three major basic residues, Arg912, Arg918, and Arg921, and two additional residues, Lys905 and Arg909 (Delacoux, F., Fichard, A., Cogne, S., Garrone, R., and Ruggiero, F. (2000) J. Biol. Chem. 275, 29377-29382). Here, we further characterized the binding of HepV and collagen V to heparin and heparan sulfate by surface plasmon resonance assays. HepV bound to heparin and heparan sulfate with a similar affinity (KD approximately 18 and 36 nM, respectively) in a cation-dependent manner, and 2-O-sulfation of heparin was shown to be crucial for the binding. An octasaccharide of heparin and a decasaccharide of heparan sulfate were required for HepV binding. Studies with HepV mutants showed that the same basic residues were involved in the binding to heparin, to heparan sulfate, and to the cell surface. The contribution of Lys905 and Arg909 was found to be significant. The triple-helical peptide GPC(GPP)5G904-R918(GPP)5GPC-NH2 and native collagen V molecules formed much more stable complexes with heparin than HepV, and collagen V bound to heparin/heparan sulfate with a higher affinity (in the nanomolar range) than HepV. Heat and chemical denaturation strongly decreased the binding, indicating that the triple helix plays a major role in stabilizing the interaction with heparin. Collagen V and HepV may play different roles in cell-matrix interactions and in matrix assembly or remodeling mediated by their specific interactions with heparan sulfate.  (+info)

CD4+25+ regulatory T cells limit Th1-autoimmunity by inducing IL-10 producing T cells following human lung transplantation. (27/105)

Chronic human lung allograft rejection is manifested by bronchiolitis obliterans syndrome (BOS). BOS has a multifactorial etiology. Previous studies have indicated that both cellular and humoral alloimmunity play a significant role in the pathogenesis of BOS. Recently, autoimmunity has also been demonstrated to contribute to lung allograft rejection in animal models. However, the significance of autoimmunity in BOS remains unknown. In this report, we investigated the role of naturally occurring CD4(+)CD25(+) regulatory T cells (T-regs) in modulating cellular autoimmunity to collagen type V (col-V), a 'sequestered' yet immunogenic self-protein present in the lung tissue, following lung transplantation (LT). We demonstrated that col-V reactive CD4(+) T cells could be detected in the peripheral blood of lung transplant recipients. There was a predominance of IL-10 producing T cells (T(IL-10)) reactive to col-V with significantly lower levels of IFN-gamma and IL-2 producing T cells (Th1 cells). The col-V specific T(IL-10) cells suppressed the proliferation and expansion of col-V specific Th1 cells by IL-10-dependent and contact-independent pathways. The T(IL-10) cells were distinct but their development was dependent on the presence of T-regs. Furthermore, during chronic lung allograft rejection there was a significant decline of T(IL-10) cells with concomitant expansion of col-V-specific IFN-gammaproducing Th1 cells.  (+info)

Interstitial and vascular type V collagen morphologic disorganization in usual interstitial pneumonia. (28/105)

Recent evidence suggests that type V collagen plays a role in organizing collagen fibrils, thus maintaining fibril size and spatial organization uniform. In this study we sought to characterize the importance of type V collagen morphological disorganization and to study the relationship between type V collagen, active remodeling of the pulmonary vascular/parenchyma (fibroblastic foci), and other collagen types in usual interstitial pneumonia (UIP). We examined type V collagen and several other collagens in 24 open lung biopsies with histological pattern of UIP from patients with idiopathic pulmonary fibrosis (IPF). We used immunofluorescence, morphometry, and three-dimensional reconstruction to evaluate the amount of collagen V and its interaction with the active remodeling progression in UIP, as well as types I and III collagen fibers. Active remodeling progression was significantly related to type V collagen density (p<0.05), showing a gradual and direct increase to minimal, moderate, and severe fibrosis degree in UIP and in the three different areas: normal, intervening, and mural-organizing fibrosis in UIP. Parenchymal changes were characterized by morphological disorganization of fibrillar collagen with diverse disarray and thickness when observed by three-dimensional reconstruction. We concluded that in the different temporal stages of UIP, vascular/parenchyma collagen type V is increased, in disarray, and is the most important predictor of survival.  (+info)

Induction of IL-10 suppressors in lung transplant patients by CD4+25+ regulatory T cells through CTLA-4 signaling. (29/105)

T cell-mediated autoimmunity to collagen V (col-V), a sequestered yet immunogenic self-protein, can induce chronic lung allograft rejection in rodent models. In this study we characterized the role of CD4+ CD25+ regulatory T cells (Tregs) in regulating col-V autoimmunity in human lung transplant (LT) recipients. LT recipients revealed a high frequency of col-V-reactive, IL-10-producing CD4+ T cells (T IL-10 cells) with low IL-2-, IFN-gamma-, IL-5-, and no IL-4-producing T cells. These T(IL-10) cells were distinct from Tregs because they lacked constitutive expression of both CD25 and Foxp3. Expansion of T IL-10 cells during col-V stimulation in vitro involved CTLA-4 on Tregs, because both depleting and blocking Tregs with anti-CTLA4 F(ab')2 mAbs resulted in loss of T IL-10 cells with a concomitant increase in IFN-gamma producing Th1 cells (TIFN-gamma cells). A Transwell culture of col-V-specific T IL-10 cells with Th1 cells (those generated in absence of Tregs) from the same patient resulted in marked inhibition of IFN-gamma and proliferation of T(IFN-gamma) cells, which was reversed by neutralizing IL-10. Furthermore, the T IL-10 cells were HLA class II restricted because blocking HLA class II on APCs resulted in the loss of IL-10 production. Chronic lung allograft rejection was associated with the loss of Tregs with a concomitant decrease in T IL-10 cells and an increase in T IFN-gamma cells. We conclude that LT patients have col-V-specific T cells that can be detected in the peripheral blood. The predominant col-V-specific T cells produce IL-10 that suppresses autoreactive Th1 cells independently of direct cellular contact. Tregs are pivotal for the induction of these "suppressor" T IL-10 cells.  (+info)

ColVa1 and ColXIa1 are required for myocardial morphogenesis and heart valve development. (30/105)

Genetic mutations in minor fibrillar collagen types Va1 (ColVa1) and XIa1 (ColXI) have been identified in connective tissue disorders including Ehlers-Danlos syndrome and chondrodysplasias. ColVa1+/- and ColXIa1-/- mutant mice recapitulate these human disorders and show aberrations in collagen fiber organization in connective tissue of the skin, cornea, cartilage, and tendon. In the heart, fibrous networks of collagen fibers form throughout the ventricular myocardium and heart valves, and alterations in collagen fiber homeostasis are apparent in many forms of cardiac disease associated with myocardial dysfunction and valvular insufficiency. There is increasing evidence for cardiac dysfunction in connective tissue disorders, but the mechanisms have not been addressed. ColVa1+/- and ColXIa1-/- mutant mice were used to identify roles for ColVa1 and ColXIa1 in ventricular myocardial morphogenesis and heart valve development. These affected cardiac structures show a compensatory increase in type I collagen deposition, similar to that previously described in valvular and cardiomyopathic disease. Morphological cardiac defects associated with changes in collagen fiber homeostasis identified in ColVa1+/- and ColXIa1-/- mice provide an insight into previously unappreciated forms of cardiac dysfunction associated with connective tissue disorders.  (+info)

Enzymatic cleavage specificity of the proalpha1(V) chain processing analysed by site-directed mutagenesis. (31/105)

The proteolytic processing of procollagen V is complex and depends on the activity of several enzymes among which the BMP-1 (bone morphogenetic protein-1)/tolloid metalloproteinase and the furin-like proprotein convertases. Few of these processing interactions could have been predicted by analysing the presence of conserved consensus sequences in the proalpha1(V) chain. In the present study we opted for a cell approach that allows a straightforward identification of processing interactions. A construct encompassing the complete N-terminal end of the proalpha1(V) chain, referred to as Nalpha1, was recombinantly expressed to be used for enzymatic assays and for antibody production. Structural analysis showed that Nalpha1 is a monomer composed of a compact globule and an extended tail, which correspond respectively to the non-collagenous Nalpha1 subdomains, TSPN-1 (thrombospondin-1 N-terminal domain-like) and the variable region. Nalpha1 was efficiently cleaved by BMP-1 indicating that the triple helix is not required for enzyme activity. By mutating residues flanking the cleavage site, we showed that the aspartate residue at position P2' is essential for BMP-1 activity. BMP-1 activity at the C-terminal end of the procollagen V was assessed by generating a furin double mutant (R1584A/R1585A). We showed that, in absence of furin activity, BMP-1 is capable of processing the C-propeptide even though less efficiently than furin. Altogether, our results provide new relevant information on this complex and poorly understood mechanism of enzymatic processing in procollagen V function.  (+info)

Autoantibody profile in the experimental model of scleroderma induced by type V human collagen. (32/105)

The aim of this study is to evaluate the humoral autoimmune response in the experimental model of systemic sclerosis (SSc) induced by human type V collagen (huCol V). New Zealand rabbits were immunized with huCol V in Freund's complete adjuvant (FCA) and boosted twice with 15 days intervals with huCol V in Freund's incomplete adjuvant. Control groups included animals injected only with FCA or bovine serum albumin. Bleeding was done at days 0, 30, 75 and 120. Tissue specimens were obtained for histopathological investigation. Serological analysis included detection of antibodies against huCol V and anti-topoisomerase I (Anti-Scl70) by enzyme-linked immunosorbent assay, antinuclear antibodies (ANA) by indirect immunofluorescence, and rheumatoid factor (RF) by a latex agglutination test. Target antigens were characterized by immunoblot. Histological analysis revealed extracellular matrix remodeling with fibrosis and vasculitis. Anti-Scl70 and ANA were detected as early as 30 days in all huCol V animals. The universal ANA staining pattern was Golgi-like. This serum reactivity was not abolished by previous absorption with huCol V. Characterization of the target antigen by immunoblot revealed two major protein fractions of 175,000 and 220,000 MW. Similarly to ANA, there was a gradual increase of reactivity throughout the immunization and also it was not abolished by preincubation of serum samples with huCol V. RF testing was negative in hyperimmune sera. CONCLUSION: The production of autoantibodies, including anti-Scl70, a serological marker for SSc associated with histopathological alterations, validates huCol V induced-experimental model and brings out its potential for understanding the pathophysiology of SSc.  (+info)