Postsynaptic alpha-neurotoxin gene of the spitting cobra, Naja naja sputatrix: structure, organization, and phylogenetic analysis. (1/98)

The venom of the spitting cobra, Naja naja sputatrix contains highly potent alpha-neurotoxins (NTXs) in addition to phospholipase A2 (PLA2) and cardiotoxin (CTX). In this study, we report the complete characterization of three genes that are responsible for the synthesis of three isoforms of alpha-NTX in the venom of a single spitting cobra. DNA amplification by long-distance polymerase chain reaction (LD-PCR) and genome walking have provided information on the gene structure including their promoter and 5' and 3' UTRs. Each NTX isoform is approximately 4 kb in size and contains three exons and two introns. The sequence homology among these isoforms was found to be 99%. Two possible transcription sites were identified by primer extension analysis and they corresponded to the adenine (A) nucleotide at positions +1 and -45. The promoter also contains two TATA boxes and a CCAAT box. Putative binding sites for transcriptional factors AP-2 and GATA are also present. The high percentage of similarity observed among the NTX gene isoforms of N. n. sputatrix as well as with the alpha-NTX and kappa-NTX genes from other land snakes suggests that the NTX gene has probably evolved from a common ancestral gene.  (+info)

Binding of nucleotide triphosphates to cardiotoxin analogue II from the Taiwan cobra venom (Naja naja atra). Elucidation of the structural interactions in the dATP-cardiotoxin analogue ii complex. (2/98)

Snake venom cardiotoxins have been recently shown to block the enzymatic activity of phospholipid protein kinase and Na+,K+-ATPase. To understand the molecular basis for the inhibitory effects of cardiotoxin on the action of these enzymes, the nucleotide triphosphate binding ability of cardiotoxin analogue II (CTX II) from the Taiwan cobra (Naja naja atra) venom is investigated using a variety of spectroscopic techniques such as fluorescence, circular dichroism, and two-dimensional NMR. CTX II is found to bind to all the four nucleotide triphosphates (ATP, UTP, GTP, and CTP) with similar affinity. Detailed studies of the binding of dATP to CTX II indicated that the toxin molecule is significantly stabilized in the presence of the nucleotide. Molecular modeling, based on the NOEs observed for the dATP.CTX II complex, reveals that dATP binds to the CTX II molecule at the groove enclosed between the N- and C-terminal ends of the toxin molecule. Based on the results obtained in the present study, a molecular mechanism to account for the inhibition of the enzymatic activity of the phospholipid-sensitive protein kinase and Na+,K+-ATPase is also proposed.  (+info)

Dual effect of cobra cardiotoxin on vascular smooth muscle and endothelium. (3/98)

AIM: To assess the cytotoxic effects of cobra cardiotoxin (CTX) on rat aorta. METHODS: Measure of contractility of aortic rings with or without endothelium. RESULTS: In endothelium-intact rings, CTX 10 mumol.L-1 induced a transient relaxation followed by a sustained contraction. Removal of the endothelium or pre-incubation of the rings with NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) abolished the transient relaxation but did not affect the magnitude of the contractile response induced by CTX. CTX itself induced contraction of vascular smooth muscle but also reduced contractions induced by phenylephrine (PhE) or KCl stimulation in a concentration-dependent manner. Contraction induced by CTX was dependent on the external Ca2+ concentration. Maximal contractile response to CTX was obtained in medium containing Ca2+ 1 mmol.L-1. This response decreased with higher Ca2+ concentration and disappeared when Ca2+ 7 mmol.L-1, organic and inorganic calcium channel blockers were present in the external solution before CTX addition. In preparations with the endothelium intact and incubated with CTX, relaxation by acetylcholine (ACh) stimulation of the tension induced by PhE was decreased. Endothelium-dependent relaxation to ACh was preserved when Ca2+ 5 mmol.L-1 was added to the medium prior to CTX. CONCLUSION: CTX first triggers the release of NO from the endothelium which results in muscle relaxation, and then causes smooth muscle contraction, Ca2+ and Ca2+ channel blockers prevented the effect of CTX.  (+info)

Two forms of cytotoxin II (cardiotoxin) from Naja naja oxiana in aqueous solution: spatial structures with tightly bound water molecules. (4/98)

1H-NMR spectroscopy data, such as NOE intraprotein and (bound water)/protein contacts, 3J coupling constants and deuterium exchange rates were used to determine the in-solution spatial structure of cytotoxin II from Naja naja oxiana snake venom (CTII). Exploiting information from two 1H-NMR spectral components, shown to be due to cis/trans isomerization of the Val7-Pro8 peptide bond, spatial structures of CTII minor and major forms (1 : 6) were calculated using the torsion angle dynamics algorithm of the DYANA program and then energy refined using the FANTOM program. Each form, major and minor, is represented by 20 resulting conformers, demonstrating mean backbone rmsd values of 0.51 and 0.71 A, respectively. Two forms of CTII preserve the structural skeleton as three large loops, including two beta-sheets with bend regions, and demonstrate structural differences at loop I, where cis/trans isomerization occurs. The CTII side-chain distribution constitutes hydrophilic and hydrophobic belts around the protein, alternating in the trend of the three main loops. Because of the Omega-shaped backbone, formed in participation with two bound water molecules, the tip of loop II bridges the tips of loops I and III. This ensures the continuity of the largest hydrophobic belt, formed with the residues of these tips. Comparison revealed pronounced differences in the spatial organization of the tips of the three main loops between CTII and previous structures of homologous cytotoxins (cardiotoxins) in solution.  (+info)

In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. (5/98)

Regeneration of adult skeletal muscle is an asynchronous process requiring the activation, proliferation and fusion of satellite cells, to form new muscle fibres. This study was designed to determine the pattern of expression in vivo of the two myogenic regulatory factors, Myf5 and MyoD during this process. Cardiotoxin was used to induce regeneration in the gastrocnemius and soleus muscles of heterozygous Myf5-nlacZ mice, and the muscles were assayed for the presence of (beta)-galactosidase (Myf5) and MyoD. Adult satellite cells identified by M-cadherin labelling, when activated, initially express either MyoD or Myf5 or both myogenic factors. Subsequently all proliferating myoblasts express MyoD and part of the population is (beta)-galactosidase (Myf5) positive. Furthermore, we demonstrate that activated satellite cells, which express either Myf5 or MyoD, do not accumulate selectively on fast or slow muscle fibres.  (+info)

Activation of high levels of endogenous phospholipase A2 in cultured cells. (6/98)

Activatable cellular phospholipase A2 (PLase; phosphatide 2-acyl-hydrolase, EC 3.1.1.4) has been proposed to constitute the first and rate-limiting step in prostaglandin synthesis and to regulate membrane function by altering the levels in the membrane of the detergent lipids lysolecithin and free fatty acids. We have observed that a wide variety of cells in culture contain high levels of endogenous PLase that can be activated by polypeptide toxins, such as melittin purified from bee venom and direct lytic factor purified from the venom of African Ringhals cobra (Hemachatus hemachatus). Activation of PLase by sublytic concentrations of these agents results in the synthesis and release of prostaglandins. Melittin concentrations greater than or equal to 10 microgram/ml activate sufficient PLase in 3T3-4a mouse fibroblasts to hydrolyze 10% of the cellular lecithin in less than 5 min and virtually all of it within 30 min, demonstrating the existence of sufficient activatable PLase to provide the basis for the proposed mechanism of regulation of membrane function by alteration of membrane lipid composition. Lipases, phospholipases B and C, and sphingomyelinases are not activated by melittin. The PLase activated in 3T3-4a cells exhibits little, if any, specificity for individual phosphoglycerides. The PLase activated by direct lytic factor exhibits a Ca2+ dependence characteristic of lysosomal PLase, wherease the Ca2+ dependence of PLase activated by melittin is consistent with the activation of a cell-surface enzyme. The extent of cell death correlates with percent of maximal PLase activation.  (+info)

Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. (7/98)

Myocyte nuclear factor (MNF) is a winged helix transcription factor that is expressed selectively in myogenic stem cells (satellite cells) of adult animals. Using a gene knockout strategy to generate a functional null allele at the Mnf locus, we observed that mice lacking MNF are viable, but severely runted. Skeletal muscles of Mnf-/- animals are atrophic, and satellite cell function is impaired. Muscle regeneration after injury is delayed and incomplete, and the normal timing of expression of cell cycle regulators and myogenic determination genes is dysregulated. Mnf mutant mice were intercrossed with mdx mice that lack dystrophin and exhibit only a subtle myopathic phenotype. In contrast, mdx mice that also lack MNF die in the first few weeks of life with a severe myopathy. Haploinsufficiency at the Mnf locus (Mnf+/-) also exacerbates the mdx phenotype to more closely resemble Duchenne's muscular dystrophy in humans. We conclude that MNF acts to regulate genes that coordinate the proliferation and differentiation of myogenic stem cells after muscle injury. Animals deficient in MNF may prove useful for evaluation of potential therapeutic interventions to promote muscle regeneration for patients having Duchenne's muscular dystrophy.  (+info)

Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)--identification of structural features important for the lethal action of snake venom cardiotoxins. (8/98)

The aim of the present study is to understand the structural features responsible for the lethal activity of snake venom cardiotoxins. Comparison of the lethal potency of the five cardiotoxin isoforms isolated from the venom of Taiwan cobra (Naja naja atra) reveals that the lethal potency of CTX I and CTX V are about twice of that exhibited by CTX II, CTX III, and CTX IV. In the present study, the solution structure of CTX V has been determined at high resolution using multidimensional proton NMR spectroscopy and dynamical simulated annealing techniques. Comparison of the high resolution solution structures of CTX V with that of CTX IV reveals that the secondary structural elements in both the toxin isoforms consist of a triple and double-stranded antiparallel beta-sheet domains. Critical examination of the three-dimensional structure of CTX V shows that the residues at the tip of Loop III form a distinct "finger-shaped" projection comprising of nonpolar residues. The occurrence of the nonpolar "finger-shaped" projection leads to the formation of a prominent cleft between the residues located at the tip of Loops II and III. Interestingly, the occurrence of a backbone hydrogen bonding (Val27CO to Leu48NH) in CTX IV is found to distort the "finger-shaped" projection and consequently diminish the cleft formation at the tip of Loops II and III. Comparison of the solution structures and lethal potencies of other cardiotoxin isoforms isolated from the Taiwan cobra (Naja naja atra) venom shows that a strong correlation exists between the lethal potency and occurrence of the nonpolar "finger-shaped" projection at the tip of Loop III. Critical analysis of the structures of the various CTX isoforms from the Taiwan cobra suggest that the degree of exposure of the cationic charge (to the solvent) contributed by the invariant lysine residue at position 44 on the convex side of the CTX molecules could be another crucial factor governing their lethal potency.  (+info)