Structural and functional changes in acute liver injury. (1/581)

Carbon tetrachloride produces liver cell injury in a variety of animal species. The first structurally recognizable changes occur in the endoplasmic reticulum, with alteration in ribosome-membrane interactions. Later there is an increase in intracellular fat, and the formation of tangled nets of the ergastoplasm. At no time are there changes in mitochondria or single membrane limited bodies in cells with intact plasmalemma, although a relative increase in cell sap may appear. In dead cells (those with plasmalemma discontinuties) crystalline deposits of calcium phosphatase may be noted. Functional changes are related to the endoplasmic reticulum and the plasma membrane. An early decrease in protein synthesis takes place; an accumulation of neutral lipid is related to this change. Later alterations in the ergastoplasmic functions (e.g., mixed function oxidation) occurs. Carbon tetrachloride is not the active agent; rather, a product of its metabolism, probably the CC1, free radical, is. The mechanisms of injury include macromolecular adduction and peroxide propagation. A third possibility includes a cascade effect with the production of secondary and tertiary products, also toxic in nature, with the ability to produce more widespread damage to intracellular structures.  (+info)

Quantitative aspects in the assessment of liver injury. (2/581)

Liver function data are usually difficult to use in their original form when one wishes to compare the hepatotoxic properties of several chemical substances. However, procedures are available for the conversion of liver function data into quantal responses. These permit the elaboration of dose-response lines for the substances in question, the calculation of median effective doses and the statistical analysis of differences in liver-damaging potency. These same procedures can be utilized for estimating the relative hazard involved if one compares the liver-damaging potency to the median effective dose for some other pharmacologie parameter. Alterations in hepatic triglycerides, lipid peroxidation, and the activities of various hepatic enzymes can also be quantitiated in a dose-related manner. This permits the selection of equitoxic doses required for certain comparative studies and the selection of doses in chemical interaction studies. The quantitative problems involved in low-frequency adverse reactions and the difficulty these present in the detection of liver injury in laboratory animals are discussed.  (+info)

Model for bacteriophage T4 development in Escherichia coli. (3/581)

Mathematical relations for the number of mature T4 bacteriophages, both inside and after lysis of an Escherichia coli cell, as a function of time after infection by a single phage were obtained, with the following five parameters: delay time until the first T4 is completed inside the bacterium (eclipse period, nu) and its standard deviation (sigma), the rate at which the number of ripe T4 increases inside the bacterium during the rise period (alpha), and the time when the bacterium bursts (mu) and its standard deviation (beta). Burst size [B = alpha(mu - nu)], the number of phages released from an infected bacterium, is thus a dependent parameter. A least-squares program was used to derive the values of the parameters for a variety of experimental results obtained with wild-type T4 in E. coli B/r under different growth conditions and manipulations (H. Hadas, M. Einav, I. Fishov, and A. Zaritsky, Microbiology 143:179-185, 1997). A "destruction parameter" (zeta) was added to take care of the adverse effect of chloroform on phage survival. The overall agreement between the model and the experiment is quite good. The dependence of the derived parameters on growth conditions can be used to predict phage development under other experimental manipulations.  (+info)

A novel strategy for the preparation of liposomes: rapid solvent exchange. (4/581)

During the preparation of multi-component model membranes, a primary consideration is that compositional homogeneity should prevail throughout the suspension. Some conventional sample preparation methods pass the lipid mixture through an intermediary, solvent-free state. This is an ordered, solid state and may favor the demixing of membrane components. A new preparative method has been developed which is specifically designed to avoid this intermediary state. This novel strategy is called rapid solvent exchange (RSE) and entails the direct transfer of lipid mixtures between organic solvent and aqueous buffer. RSE liposomes require no more than a minute to prepare and manifest considerable entrapment volumes with a high fraction of external surface area. In phospholipid/cholesterol mixtures of high cholesterol content, suspensions prepared by more conventional methods reveal evidence of artifactual demixing, whereas samples prepared by rapid solvent exchange do not. The principles which may lead to artifactual demixing during conventional sample preparation are discussed.  (+info)

Distribution of gangliosides, GM1 and GM3, in the rat oviduct. (5/581)

It is known that gangliosides, being ubiquitous membrane components, play important roles in cell-cell recognition, differentiation and transmembrane signalling. GM3, GM1 and GD1a were detected in the rat oviduct as major gangliosides by thin-layer chromatography (TLC) analysis. The total amounts of gangliosides from the oviducts at various times after hormone injection were not much changed. In order to identify their distribution and possible changes during ovulation, frozen sections of the rat oviducts were stained with specific monoclonal antibodies (MAbs) against the ganglio-series gangliosides. GM3 and GM1 were expressed in a different manner, but GD1a and other gangliosides were not immunohistochemically detected. In the ampullar region, GM3 was expressed in all the stroma and epithelial cells, but not GM1. GM1 was also not observed in epithelial cells. Staining by anti-GM1 monoclonal antibodies revealed long and minute thread-like structures in some of the stroma cells, whereas anti-GM3 monoclonal antibodies stained the entire cytoplasm, but not the nucleus, of all the stroma and epithelial cells. Other ganglio-series gangliosides, including GD1a, were not detected to some extent in the ampullar region by immunohistochemistry. Thus, these data suggest that GM3 and GM1 are oviduct-specific gangliosides.  (+info)

Preliminary characterization of a reovirus isolated from golden ide Leuciscus idus melanotus. (6/581)

Some characteristics of a reovirus recently isolated from golden ide Leuciscus idus melanotus and tentatively designated as golden ide reovirus (GIRV) were determined. Spherical non-enveloped particles with an outer capsid of about 70 nm and an inner capsid of about 50 nm were observed by electron microscopy. The density of the virus determined in CsCl gradients was 1.36 g ml-1. The genome contained 11 segments of dsRNA. GIRV differed from other aquareoviruses by a slight reduction of infectivity after treatment with chloroform and by the absence of forming syncytia in cell monolayers.  (+info)

Drinking water disinfection byproducts: review and approach to toxicity evaluation. (7/581)

There is widespread potential for human exposure to disinfection byproducts (DBPs) in drinking water because everyone drinks, bathes, cooks, and cleans with water. The need for clean and safe water led the U.S. Congress to pass the Safe Drinking Water Act more than 20 years ago in 1974. In 1976, chloroform, a trihalomethane (THM) and a principal DBP, was shown to be carcinogenic in rodents. This prompted the U.S. Environmental Protection Agency (U.S. EPA) in 1979 to develop a drinking water rule that would provide guidance on the levels of THMs allowed in drinking water. Further concern was raised by epidemiology studies suggesting a weak association between the consumption of chlorinated drinking water and the occurrence of bladder, colon, and rectal cancer. In 1992 the U.S. EPA initiated a negotiated rulemaking to evaluate the need for additional controls for microbial pathogens and DBPs. The goal was to develop an approach that would reduce the level of exposure from disinfectants and DBPs without undermining the control of microbial pathogens. The product of these deliberations was a proposed stage 1 DBP rule. It was agreed that additional information was necessary on how to optimize the use of disinfectants while maintaining control of pathogens before further controls to reduce exposure beyond stage 1 were warranted. In response to this need, the U.S. EPA developed a 5-year research plan to support the development of the longer term rules to control microbial pathogens and DBPs. A considerable body of toxicologic data has been developed on DBPs that occur in the drinking water, but the main emphasis has been on THMs. Given the complexity of the problem and the need for additional data to support the drinking water DBP rules, the U.S. EPA, the National Institute of Environmental Health Sciences, and the U.S. Army are working together to develop a comprehensive biologic and mechanistic DBP database. Selected DBPs will be tested using 2-year toxicity and carcinogenicity studies in standard rodent models; transgenic mouse models and small fish models; in vitro mechanistic and toxicokinetic studies; and reproductive, immunotoxicity, and developmental studies. The goal is to create a toxicity database that reflects a wide range of DBPs resulting from different disinfection practices. This paper describes the approach developed by these agencies to provide the information needed to make scientifically based regulatory decisions.  (+info)

Hepatoprotection by dimethyl sulfoxide. I. Protection when given twenty-four hours after chloroform or bromobenzene. (8/581)

Dimethyl sulfoxide (DMSO) has previously been reported to protect against hepatotoxicity resulting from chloroform (CHCl3) or bromobenzene (BB) when given 10 hr after the toxicant. The object of these studies was to further demonstrate the latent protective ability of DMSO by administering it at a much later time (24 hr) following toxicant exposure. In addition, a more detailed evaluation of the lesions was performed to better characterize the lesion progression and resolution. Male Sprague-Dawley rats received a hepatotoxic oral dose of either CHCl3 (1.0 ml/kg) or BB (0.5 ml/kg) and then received 2 ml/kg DMSO intraperitoneally 24 hr later. With both toxicants, limited centrilobular lesions were already present by the time DMSO was administered. Without treatment, liver injury rapidly progressed so that by 48 hr it occupied 40-50% of the liver, with accompanying large increases in plasma alanine aminotransferase (ALT) activity. Administration of DMSO greatly attenuated lesion development for both toxicants; the area injured was reduced by more than 4-fold, accompanied by a decrease in 48 hr ALT activity of 8-16-fold. The ability of DMSO to intervene in the development of liver injury at such a late time appears to be unique and may provide insight into therapies for acute xenobiotic-induced hepatitis.  (+info)