Expression and cellular localization of the CC chemokines PARC and ELC in human atherosclerotic plaques. (1/3343)

Local immune responses are thought to play an important role in the development of atherosclerosis. Histological studies have shown that human atherosclerotic lesions contain T lymphocytes throughout all stages of development, many of which are in an activated state. A number of novel CC chemokines have been described recently, which are potent chemoattractants for lymphocytes: PARC (pulmonary and activation-regulated chemokine), ELC (EBI1-ligand chemokine), LARC (liver and activation-regulated chemokine), and SLC (secondary lymphoid-tissue chemokine). Using reverse transcriptase-polymerase chain reaction and in situ hybridization, we have found gene expression for PARC and ELC but not for LARC or SLC in human atherosclerotic plaques. Immunohistochemical staining of serial plaque sections with specific cell markers revealed highly different expression patterns of PARC and ELC. PARC mRNA was restricted to CD68+ macrophages (n = 14 of 18), whereas ELC mRNA was widely expressed by macrophages and intimal smooth muscle cells (SMC) in nearly all of the lesions examined (n = 12 of 14). ELC mRNA was also found to be expressed in the medial SMC wall of highly calcified plaques (n = 4). Very low levels of ELC mRNA expression could also be detected in normal mammary arteries but no mRNA expression for PARC was detected in these vessels (n = 4). In vitro, ELC mRNA was found to be up-regulated in aortic SMC stimulated with tumor necrosis factor-a and interferon-gamma but not in SMC stimulated with serum. Both PARC and ELC mRNA were expressed by monocyte-derived macrophages but not monocytes. The expression patterns of PARC and ELC mRNA in human atherosclerotic lesions suggest a potential role for these two recently described CC chemokines in attracting T lymphocytes into atherosclerotic lesions.  (+info)

Enhanced myeloid progenitor cell cycling and apoptosis in mice lacking the chemokine receptor, CCR2. (2/3343)

Chemokines regulate hematopoiesis in part by influencing the proliferative status of myeloid progenitor cells (MPC). Human MCP-1/murine JE, a myelosuppressive chemokine, specifically binds C-C chemokine receptor 2 (CCR2). Transgenic mice containing a targeted disruption in CCR2 that prevents expression of CCR2 mRNA and protein and have MPC that are insensitive to inhibition by MCP-1 and JE in vitro were assessed for potential abnormalities in growth of bone marrow (BM) and spleen MPC. MPC in both unseparated and c-kit+lin- populations of BM from CCR2-deficient (-/-) mice were in a greatly increased proliferation state compared with CCR2 littermate control (+/+) mice, an effect not apparent with progenitors from spleens of CCR2 (-/-) mice. Increased cycling status of CCR2 (-/-) BM MPC did not result in increased numbers of nucleated cells or MPC in BM or spleens of CCR2 (-/-) mice. Possible reasons for this apparent discrepancy were highlighted by flow cytometric analysis of c-kit+lin- BM cells and colony formation by MPC subjected to delayed addition of growth factors. The c-kit+lin- population of BM cells from CCR2 (-/-) mice had a significantly higher percentage of apoptotic cells than those from CCR2 (+/+) BM. However, elevated apoptosis was not associated with decreased numbers of c-kit+lin- cells. The increased percentage of apoptotic c-kit+lin- cells was due to elevated apoptosis within the c-kitdimlin-, but not the c-kitbrightlin-, subpopulations of cells. Consistent with enhanced apoptosis of phenotypically defined cells, MPC from CCR2 (-/-) BM and purified c-kit+lin- cells demonstrated decreased cell survival in vitro upon delayed addition of growth factors. The data suggest that signals received by CCR2 limit proliferation of progenitor cells in the BM, but also enhance survival of these cells.  (+info)

Interactions between Tat and TAR and human immunodeficiency virus replication are facilitated by human cyclin T1 but not cyclins T2a or T2b. (3/3343)

The transcriptional transactivator (Tat) from the human immunodeficiency virus (HIV) does not function efficiently in Chinese hamster ovary (CHO) cells. Only somatic cell hybrids between CHO and human cells and CHO cells containing human chromosome 12 (CHO12) support high levels of Tat transactivation. This restriction was mapped to interactions between Tat and TAR. Recently, human cyclin T1 was found to increase the binding of Tat to TAR and levels of Tat transactivation in rodent cells. By combining individually with CDK9, cyclin T1 or related cyclins T2a and T2b form distinct positive transcription elongation factor b (P-TEFb) complexes. In this report, we found that of these three cyclins, only cyclin T1 is encoded on human chromosome 12 and is responsible for its effects in CHO cells. Moreover, only human cyclin T1, not mouse cyclin T1 or human cyclins T2a or T2b, supported interactions between Tat and TAR in vitro. Finally, after introducing appropriate receptors and human cyclin T1 into CHO cells, they became permissive for infection by and replication of HIV.  (+info)

Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. (4/3343)

Helper T cells are classified into Th1 and Th2 subsets based on their profiles of cytokine production. Th1 cells are involved in cell-mediated immunity, whereas Th2 cells induce humoral responses. Selective recruitment of these two subsets depends on specific adhesion molecules and specific chemoattractants. Here, we demonstrate that the T cell-directed CC chemokine thymus and activation-regulated chemokine (TARC) was abundantly produced by monocytes treated with granulocyte macrophage colony stimulating factor (GM-CSF) or IL-3, especially in the presence of IL-4 and by dendritic cells derived from monocytes cultured with GM-CSF + IL-4. The receptor for TARC and another macrophage/dendritic cell-derived CC chemokine macrophage-derived chemokine (MDC) is CCR4, a G protein-coupled receptor. CCR4 was found to be expressed on approximately 20% of adult peripheral blood effector/memory CD4+ T cells. T cells attracted by TARC and MDC generated cell lines predominantly producing Th2-type cytokines, IL-4 and IL-5. Fractionated CCR4+ cells but not CCR4- cells also selectively gave rise to Th2-type cell lines. When naive CD4+ T cells from adult peripheral blood were polarized in vitro, Th2-type cells selectively expressed CCR4 and vigorously migrated toward TARC and MDC. Taken together, CCR4 is selectively expressed on Th2-type T cells and antigen-presenting cells may recruit Th2 cells expressing CCR4 by producing TARC and MDC in Th2-dominant conditions.  (+info)

No evidence for an effect of the CCR5 delta32/+ and CCR2b 64I/+ mutations on human immunodeficiency virus (HIV)-1 disease progression among HIV-1-infected injecting drug users. (5/3343)

The relationship between CCR5 and CCR2b genotypes and human immunodeficiency virus (HIV)-1 disease progression was studied among the 108 seroconverters of the Amsterdam cohort of injecting drug users (IDUs). In contrast to earlier studies among homosexual men, no effect on disease progression of the CCR5 Delta32/+ and the CCR2b 64I/+ genotypes was found, when progression to AIDS, death, or a CD4 cell count <200/microL was compared by a Cox proportional hazards model. Furthermore, CD4 cell decline (by a regression model for repeated measurements) and virus load in the first 3 years after seroconversion did not differ between the CCR5 and CCR2b wild type and heterozygous genotypes. A nested matched case-control study also revealed no significant effect of the CCR5 and CCR2b mutations. Immunologic differences between IDUs and homosexual men may account for the observed lack of effect. Alternatively, difference in transmission route or characteristics of the HIV-1 variants that circulate in IDUs could also explain this phenomenon.  (+info)

Chemokine and chemokine receptor gene variants and risk of non-Hodgkin's lymphoma in human immunodeficiency virus-1-infected individuals. (6/3343)

Normal B-lymphocyte maturation and proliferation are regulated by chemotactic cytokines (chemokines), and genetic polymorphisms in chemokines and chemokine receptors modify progression of human immunodeficiency virus-1 (HIV-1) infection. Therefore, 746 HIV-1-infected persons were examined for associations of previously described stromal cell-derived factor 1 (SDF-1) chemokine and CCR5 and CCR2 chemokine receptor gene variants with the risk of B-cell non-Hodgkin's lymphoma (NHL). The SDF1-3'A chemokine variant, which is carried by 37% of whites and 11% of blacks, was associated with approximate doubling of the NHL risk in heterozygotes and roughly a fourfold increase in homozygotes. After a median follow-up of 11.7 years, NHL developed in 6 (19%) of 30 SDF1-3'A/3'A homozygotes and 22 (10%) of 202 SDF1-+/3'A heterozygotes, compared with 24 (5%) of 514 wild-type subjects. The acquired immunodeficiency syndrome (AIDS)-protective chemokine receptor variant CCR5-triangle up32 was highly protective against NHL, whereas the AIDS-protective variant CCR2-64I had no significant effect. Racial differences in SDF1-3'A frequency may contribute to the lower risk of HIV-1-associated NHL in blacks compared with whites. SDF-1 genotyping of HIV-1-infected patients may identify subgroups warranting enhanced monitoring and targeted interventions to reduce the risk of NHL.  (+info)

RANTES, IFN-gamma, CCR1, and CCR5 mRNA expression in peripheral blood, lymph node, and bronchoalveolar lavage mononuclear cells during primary simian immunodeficiency virus infection of macaques. (7/3343)

Primary infection of macaques with pathogenic isolates of simian immunodeficiency virus (SIV) (as a model of HIV infection in humans) represents a unique opportunity to study early lentivirus/host interactions. We sought to determine whether there is a temporal relationship linking SIV replication and dissemination and the expression of the chemokine RANTES (regulated upon activation normal T cell expressed and secreted) and the SIV/HIV coreceptor CCR5 in different tissues during acute SIV infection of macaques. Four cynomolgus macaques were inoculated intravenously with a pathogenic primary isolate of SIVmac251. RT-PCR was used to monitor the expression of RANTES and CCR5 mRNA in fresh isolated mononuclear cells from blood, lymph node, and bronchoalveolar lavages. These expressions were compared to those of IFN-gamma as an indicator of the development of the immune response and to another receptor for RANTES, CCR1, which is not described as a coreceptor for SIV/HIV-1 entry. An enhancement of CCR1/CCR5 mRNA expression was noticed during primary SIVmac251 infection of macaques, mainly in tissue. In the three different compartments investigated, IFN-gamma and RANTES overexpression was noticed by the time of systemic viral replication containment. Our results put CCR5 and RANTES mRNA expression back in the context of inflammatory and immune responses to SIV primary infection.  (+info)

Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. (8/3343)

Dendritic cells (DCs) emigrate to regional lymph nodes (LNs) during immune responses via afferent lymphatic channels. Secondary lymphoid-tissue chemokine (SLC), a CC chemokine, is expressed in secondary lymphoid organs and mediates the chemotaxis of lymphocytes and DCs via its receptor, CC chemokine receptor 7 (CCR7). By dual-label fluorescence confocal microscopy, we showed MHC class II-positive cells within SLC-staining lymphatic channels in the mouse dermis. SLC was a potent in vitro chemoattractant for cultured, migratory skin DCs, and it enhanced the emigration of MHC class II-positive DCs from mouse skin explants by an average of 2.5-fold. Mature or cytokine-activated, but not resting, Langerhans cells expressed CCR7 mRNA by RT-PCR. Anti-SLC Abs, but not control or anti-eotaxin Abs, blocked the in vivo migration of 51Cr-labeled, skin-derived DCs from footpads to draining LNs by 50% (n = 9, p < 0. 005). Thus, we provide direct evidence that SLC and CCR7 participate in the emigration of DCs from peripheral tissue to LNs via lymphatics.  (+info)