3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (trp-P-1) is incorporated into rat splenocytes, thymocytes, and hepatocytes through monoamine transporters and induces apoptosis. (57/508)

3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), which is a tryptophan pyrolysate formed during cooking, induces apoptosis in rat splenocytes, thymocytes, and hepatocytes. In this study, we investigated whether Trp-P-1 is transported into these cells and causes apoptosis. Trp-P-1 was immediately incorporated into rat splenocytes, thymocytes, and hepatocytes in a dose- and time-dependent manner. Dopamine and serotonin significantly competed with the uptake of Trp-P-1 into these cells, and nomifensine and indatraline, which are inhibitors of dopamine- and serotonin-transporters, respectively, markedly suppressed the uptake of Trp-P-1. On the other hand, amino acids including tryptophan did not compete with Trp-P-1. Inhibition of monoamine transporters using nomifensine and indatraline partially suppressed Trp-P-1-induced cell death in these cells. In hepatocytes, the inhibition of transporters prevented Trp-P-1-induced morphological changes and activation of caspase-3. These results demonstrated that Trp-P-1 is incorporated into the cells through monoamine transporters and induces apoptosis.  (+info)

The gerbil elevated plus-maze I: behavioral characterization and pharmacological validation. (58/508)

Several neurokinin NK1 receptor antagonists currently being developed for anxiety and depression have reduced affinity for the rat and mouse NK1 receptor compared with human. Consequently, it has proven difficult to test these agents in traditional rat and mouse models of anxiety and depression. This issue has been overcome, in part, by using non-traditional lab species such as the guinea pig and gerbil, which have NK1 receptors closer in homology to human NK1 receptors. However, there are very few reports describing the behavior of gerbils in traditional models of anxiety. The aim of the present study was to determine if the elevated plus-maze, a commonly used anxiety model, could be adapted for the gerbil. Using a specially-designed elevated plus-maze, gerbils exhibited an 'anxious' behavioral profile similar to that observed in rats and mice, i.e., reduced entries into, and time spent exploring, an open, aversive arm. The anxiolytic drugs diazepam (0.03-3 mg/kg i.p.), chlordiazepoxide (0.3-10 mg/kg i.p.), and buspirone (0.3-30 mg/kg s.c.) increased open arm exploration and produced anxiolytic-like effects on risk-assessment behaviors (reduced stretch-attend postures and increased head dips). Of particular interest, the antidepressant drugs imipramine (1-30 mg/kg p.o.), fluoxetine (1-30 mg/kg, p.o.) and paroxetine (0.3-10 mg/kg p.o.) each produced some acute anxiolytic-like activity, without affecting locomotor activity. The antipsychotic, haloperidol, and the psychostimulant, amphetamine, did not produce any anxiolytic-like effects (1-10 mg/kg s.c). The anxiogenic beta-carboline, FG-7142, reduced time spent in the open arm and head dips, and increased stretch-attend postures (1-30 mg/kg, i.p.). These studies have demonstrated that gerbils exhibit an anxiety-like profile on an elevated plus-maze, and that the gerbil elevated plus-maze may have predictive validity for anxiolytics, and antidepressants with potential anxiolytic-like effects.  (+info)

Functional characterization of GABA(A) receptors in neonatal hypothalamic brain slice. (59/508)

The hypothalamus influences a number of autonomic functions. The activity of hypothalamic neurons is modulated in part by release of the inhibitory neurotransmitter GABA onto these neurons. GABA(A) receptors are formed from a number of distinct subunits, designated alpha, beta, gamma, delta, epsilon, and theta, many of which have multiple isoforms. Little data exist, however, on the functional characteristics of the GABA(A) receptors present on hypothalamic neurons. To gain insight into which GABA(A) receptor subunits are functionally expressed in the hypothalamus, we used an array of pharmacologic assessments. Whole cell recordings were made from thin hypothalamic slices obtained from 1- to 14-day-old rats. GABA(A) receptor-mediated currents were detected in all neurons tested and had an average EC(50) of 20 +/- 1.6 microM. Hypothalamic GABA(A) receptors were modulated by diazepam (EC(50) = 0.060 microM), zolpidem (EC(50) = 0.19 microM), loreclezole (EC(50) = 4.4 microM), methyl-6,7-dimethoxy-4-ethyl-beta-carboline (EC(50) = 7.7 microM), and 5alpha-pregnan-3alpha-hydroxy-20-one (3alpha-OH-DHP). Conversely, these receptors were inhibited by Zn(2+) (IC(50) = 70.5 microM), dehydroepiandrosterone sulfate (IC(50) = 16.7 microM), and picrotoxin (IC(50) = 2.6 microM). The alpha4/6-selective antagonist furosemide (10-1,000 microM) was ineffective in all hypothalamic neurons tested. The results of our pharmacological analysis suggest that hypothalamic neurons express functional GABA(A) receptor subtypes that incorporate alpha1 and/or alpha2 subunits, beta2 and/or beta3 subunits, and the gamma2 subunit. Our results suggest receptors expressing alpha3-alpha6, beta1, gamma1, and delta, if present, represent a minor component of functional hypothalamic GABA(A) receptors.  (+info)

Synthesis and absolute configuration of a new 3,4-dihydro-beta-carboline-type alkaloid, 3,4-dehydro-5(S)-5-carboxystrictosidine, isolated from Peruvian Una de Gato (Uncaria tomentosa). (60/508)

The structure including the absolute configuration of a new glucoalkaloid, 3,4-dehydro-5(S)-5-carboxystrictosidine, isolated from Peruvian Una de Gato (Cat's Claw, original plant: Uncaria tomentosa), was confirmed by synthesis starting from secologanin and L-tryptophan.  (+info)

In vivo treatment with stobadine prevents lipid peroxidation, protein glycation and calcium overload but does not ameliorate Ca2+ -ATPase activity in heart and liver of streptozotocin-diabetic rats: comparison with vitamin E. (61/508)

Hyperglycemia leads to excess production of reactive oxygen species (ROS), lipid peroxidation and protein glycation that may impair cellular calcium homeostasis and results in calcium sequestration and dysfunction in diabetic tissues. Stobadine (ST) is a pyridoindole antioxidant has been postulated as a new cardio- and neuroprotectant. This study was undertaken to test the hypothesis that the treatment with ST inhibits calcium accumulation, reduces lipid peroxidation and protein glycation and can change Ca2+,Mg2+-ATPase activity in diabetic animals. The effects of vitamin E treatment were also evaluated and compared with the effects of combined treatment with ST. Diabetes was induced by streptozotocin (STZ, 55 mg/kg i.p.). Some of diabetic rats and their age-matched controls were treated orally with a low dose of ST (24.7 mg/kg/day), vitamin E (400-500 IU/kg/day) or ST plus vitamin E for 10 weeks. ST and vitamin E separately produced, in a similar degree, reduction in diabetes-induced hyperglycemia. Each antioxidant alone significantly lowered the levels of plasma lipid peroxidation, cardiac and hepatic protein glycation in diabetic rats but vitamin E treatment was found to be more effective than ST treatment alone. Diabetes-induced increase in plasma triacylglycerol levels was not significantly altered by vitamin E treatment but markedly reduced by ST alone. The treatment with each antioxidant completely prevented calcium accumulation in diabetic heart and liver. Microsomal Ca2+,Mg2+-ATPase activity significantly decreased in both tissues of untreated diabetic rats. ST alone significantly increased microsomal Ca2+,Mg2+-ATPase activity in the heart of normal rats. However, neither treatment with ST nor vitamin E alone, nor their combination did change cardiac Ca2+,Mg2+-ATPase activity in diabetic heart. In normal rats, neither antioxidant had a significant effect on hepatic Ca2+,Mg2+-ATPase activity. Hepatic Ca2+,Mg2+-ATPase activity of diabetic rats was not changed by single treatment with ST, while vitamin E alone completely prevented diabetes-induced inhibition in microsomal Ca2+,Mg2+-ATPase activity in liver. Combined treatment with ST and vitamin E provided more benefits in the reduction of hyperglycemia and lipid peroxidation in diabetic animals. This study describes potential mechanisms on cellular effects of ST in the presence of diabetes-induced hyperglycemia that may delay or inhibit the development of diabetic complications. The use of ST together with vitamin E can better control hyperglycemia-induced oxidative stress.  (+info)

Collision-induced dissociation actualized the H+-promoted reaction as observed in vitro; harman formation from beta-carboline-type monoterpenoid glucoindole alkaloids. (62/508)

The fragmentation from beta-carboline-type monoterpenoid glucoindole alkaloids to harman, which is a hypothetical pathway to generate simple beta-carbolines, was actualized in the collision-induced dissociation in MS.  (+info)

Ryanodine receptors of pancreatic beta-cells mediate a distinct context-dependent signal for insulin secretion. (63/508)

The ryanodine (RY) receptors in beta-cells amplify signals by Ca2+-induced Ca2+ release (CICR). The role of CICR in insulin secretion remains unclear in spite of the fact that caffeine is known to stimulate secretion. This effect of caffeine is attributed solely to the inhibition of cAMP-phosphodiesterases (cAMP-PDEs). We demonstrate that stimulation of insulin secretion by caffeine is due to a sensitization of the RY receptors. The dose-response relationship of caffeine-induced inhibition of cAMP-PDEs was not correlated with the stimulation of insulin secretion. Sensitization of the RY receptors stimulated insulin secretion in a context-dependent manner, that is, only in the presence of a high concentration of glucose. This effect of caffeine depended on an increase in [Ca2+]i. Confocal images of beta-cells demonstrated an increase in [Ca2+]i induced by caffeine but not by forskolin. 9-Methyl-7-bromoeudistomin D (MBED), which sensitizes RY receptors, did not inhibit cAMP-PDEs, but it stimulated secretion in a glucose-dependent manner. The stimulation of secretion by caffeine and MBED involved both the first and the second phases of secretion. We conclude that the RY receptors of beta-cells mediate a distinct glucose-dependent signal for insulin secretion and may be a target for developing drugs that will stimulate insulin secretion only in a glucose-dependent manner.  (+info)

Mechanism-based pharmacokinetic/pharmacodynamic modeling of the electroencephalogram effects of GABAA receptor modulators: in vitro-in vivo correlations. (64/508)

A mechanism-based pharmacokinetic-pharmacodynamic (PK/PD) model for neuroactive steroids, comprising a separate characterization of 1) the receptor activation process and 2) the stimulus-response relationship, was applied to various nonsteroidal GABAA receptor modulators. The EEG effects of nine prototypical GABAA receptor modulators (six benzodiazepines, one imidazopyridine, one cyclopyrrolone, and one beta-carboline) were determined in rats in conjunction with plasma concentrations. Population PK/PD modeling revealed monophasic concentration-EEG effect relationships with large differences in potency (EC50) and intrinsic activity between the compounds. The data were analyzed on the basis of the mechanism-based PK/PD model for (synthetic) neuroactive steroids on the assumption of a single and unique stimulus-response relationship. The model converged yielding estimates of both the apparent in vivo receptor affinity (KPD) and the in vivo intrinsic efficacy (ePD). The values of KPD ranged from 0.41 +/- 0 ng.ml(-1) for bretazenil to 436 +/- 72 ng.ml(-1) for clobazam and the values for e(PD) from -0.27 +/- 0 for methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate to 0.54 +/- 0.02 for diazepam. Significant linear correlations were observed between KPD for unbound concentrations and the affinity in an in vitro receptor bioassay (r = 0.93) and between e(PD) and the GABA-shift in vitro (r = 0.95). The findings of this investigation show that the in vivo effects of nonsteroidal GABAA receptor modulators and (synthetic) neuroactive steroids can be described on the basis of a single unique transducer function. In this paradigm, the nonsteroidal GABAA receptor modulators behave as partial agonists relative to neuroactive steroids.  (+info)