Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. (33/50569)

In shigellosis, the network of cellular interactions mediated by a balance of pro- and anti-inflammatory cytokines or chemokines is clearly tipped toward acute destructive inflammation of intestinal tissues by the bacterial invader. This work has addressed the role played by interleukin-8 (IL-8) in a rabbit model of intestinal invasion by Shigella flexneri. IL-8, which is largely produced by the epithelial cells themselves, appears to be a major mediator of the recruitment of polymorphonuclear leukocytes (PMNs) to the subepithelial area and transmigration of these cells through the epithelial lining. Neutralization of IL-8 function by monoclonal antibody WS-4 caused a decrease in the amount of PMNs streaming through the lamina propria and the epithelium, thus significantly attenuating the severity of epithelial lesions in areas of bacterial invasion. These findings are in agreement with our previous work (31). In contrast to the PMNs, the bacteria displayed increased transepithelial translocation, as well as overgrowth in the lamina propria and increased passage into the mesenteric blood. By mediating eradication of bacteria at their epithelial entry site, although at the cost of severe epithelial destruction, IL-8 therefore appears to be a key chemokine in the control of bacterial translocation.  (+info)

Cystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental murine keratitis. (34/50569)

Previous findings indicate that the cystic fibrosis transmembrane conductance regulator (CFTR) is a ligand for Pseudomonas aeruginosa ingestion into respiratory epithelial cells. In experimental murine keratitis, P. aeruginosa enters corneal epithelial cells. We determined the importance of CFTR-mediated uptake of P. aeruginosa by corneal cells in experimental eye infections. Entry of noncytotoxic (exoU) P. aeruginosa into human and rabbit corneal cell cultures was inhibited with monoclonal antibodies and peptides specific to CFTR amino acids 108 to 117. Immunofluorescence microscopy and flow cytometry demonstrated CFTR in the intact murine corneal epithelium, and electron microscopy showed that CFTR binds to P. aeruginosa following corneal cell ingestion. In experimental murine eye infections, multiple additions of 5 nM CFTR peptide 103-117 to inocula of either cytotoxic (exoU+) or noncytotoxic P. aeruginosa resulted in large reductions in bacteria in the eye and markedly lessened eye pathology. Compared with wild-type C57BL/6 mice, heterozygous DeltaF508 Cftr mice infected with P. aeruginosa had an approximately 10-fold reduction in bacterial levels in the eye and consequent reductions in eye pathology. Homozygous DeltaF508 Cftr mice were nearly completely resistant to P. aeruginosa corneal infection. CFTR-mediated internalization of P. aeruginosa by buried corneal epithelial cells is critical to the pathogenesis of experimental eye infection, while in the lung, P. aeruginosa uptake by surface epithelial cells enhances P. aeruginosa clearance from this tissue.  (+info)

Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. (35/50569)

We have examined the role of adenylate cyclase-hemolysin (CyaA) by constructing an in-frame deletion in the Bordetella bronchiseptica cyaA structural gene and comparing wild-type and cyaA deletion strains in natural host infection models. Both the wild-type strain RB50 and its adenylate cyclase toxin deletion (DeltacyaA) derivative efficiently establish persistent infections in rabbits, rats, and mice following low-dose inoculation. In contrast, an inoculation protocol that seeds the lower respiratory tract revealed significant differences in bacterial numbers and in polymorphonuclear neutrophil recruitment in the lungs from days 5 to 12 postinoculation. We next explored the effects of disarming specific aspects of the immune system on the relative phenotypes of wild-type and DeltacyaA bacteria. SCID, SCID-beige, or RAG-1(-/-) mice succumbed to lethal systemic infection following high- or low-dose intranasal inoculation with the wild-type strain but not the DeltacyaA mutant. Mice rendered neutropenic by treatment with cyclophosphamide or by knockout mutation in the granulocyte colony-stimulating factor locus were highly susceptible to lethal infection by either wild-type or DeltacyaA strains. These results reveal the significant role played by neutrophils early in B. bronchiseptica infection and by acquired immunity at later time points and suggest that phagocytic cells are a primary in vivo target of the Bordetella adenylate cyclase toxin.  (+info)

Surface expression of a protective recombinant pertussis toxin S1 subunit fragment in Streptococcus gordonii. (36/50569)

In this study, the expression of the Bordetella pertussis S1 subunit was tested in Streptococcus gordonii, a commensal oral bacterium which has the potential to be a live oral vaccine vehicle. The DNA fragment encoding the N-terminal 179 amino acids of the S1 subunit was ligated into the middle part of spaP, the surface protein antigen P1 gene originating from Streptococcus mutans. The resulting construct, carried on the Escherichia coli-Streptococcus shuttle vector pDL276, was introduced into S. gordonii DL-1 by natural transformation. One of the transformants (RJMIII) produced a 187-kDa protein (the predicted size of the SpaP-S1 fusion protein) which was recognized by both the anti-pertussis toxin (anti-PT) and anti-SpaP antibodies, suggesting that an in-frame fusion had been made. Results from immunogold-electron microscopic studies and cellular fractionation studies showed that the fusion protein was surface localized and was mainly associated with the cell wall of RJMIII, indicating that SpaP was able to direct the fusion protein to the cell surface. A rabbit antiserum raised against heat-killed S. gordonii RJMIII recognized the native S1 subunit of PT in Western blotting and showed a weak neutralization titer to PT by the Chinese hamster ovary cell-clustering assay. BALB/c mice immunized with the heat-killed S. gordonii RJMIII were protected from the toxic effect of PT in the leukocytosis-promoting and histamine sensitization assays. In conclusion, a fragment of the S1 subunit of PT was successfully surface expressed in S. gordonii; the recombinant S1 fragment was found to be immunogenic and could induce protection against the toxic effect of PT in mice.  (+info)

Inhibition of transforming growth factor beta production by nitric oxide-treated chondrocytes: implications for matrix synthesis. (37/50569)

OBJECTIVE: Nitric oxide (NO) is generated copiously by articular chondrocytes activated by interleukin-1beta (IL-1beta). If NO production is blocked, much of the IL-1beta inhibition of proteoglycan synthesis is prevented. We tested the hypothesis that this inhibitory effect of NO on proteoglycan synthesis is secondary to changes in chondrocyte transforming growth factor beta (TGFbeta). METHODS: Monolayer, primary cultures of lapine articular chondrocytes and cartilage slices were studied. NO production was determined as nitrite accumulation in the medium. TGFbeta bioactivity in chondrocyte- and cartilage-conditioned medium (CM) was measured with the mink lung epithelial cell bioassay. Proteoglycan synthesis was measured as the incorporation of 35S-sodium sulfate into macromolecules separated from unincorporated label by gel filtration on PD-10 columns. RESULTS: IL-1beta increased active TGFbeta in chondrocyte CM by 12 hours; by 24 hours, significant increases in both active and latent TGFbeta were detectable. NG-monomethyl-L-arginine (L-NMA) potentiated the increase in total TGFbeta without affecting the early TGFbeta activation. IL-1beta stimulated a NO-independent, transient increase in TGFbeta3 at 24 hours; however, TGFbeta1 was not changed. When NO synthesis was inhibited with L-NMA, IL-1beta increased CM concentrations of TGFbeta1 from 24-72 hours of culture. L-arginine (10 mM) reversed the inhibitory effect of L-NMA on NO production and blocked the increases in TGFbeta1. Anti-TGFbeta1 antibody prevented the restoration of proteoglycan synthesis by chondrocytes exposed to IL-1beta + L-NMA, confirming that NO inhibition of TGFbeta1 in IL-1beta-treated chondrocytes effected, in part, the decreased proteoglycan synthesis. Furthermore, the increase in TGFbeta and proteoglycan synthesis seen with L-NMA was reversed by the NO donor S-nitroso-N-acetylpenicillamide. Similar results were seen with cartilage slices in organ culture. The autocrine increase in CM TGFbeta1 levels following prior exposure to TGFbeta1 was also blocked by NO. CONCLUSION: NO can modulate proteoglycan synthesis indirectly by decreasing the production of TGFbeta1 by chondrocytes exposed to IL-1beta. It prevents autocrine-stimulated increases in TGFbeta1, thus potentially diminishing the anabolic effects of this cytokine in chondrocytes.  (+info)

A novel interaction mechanism accounting for different acylphosphatase effects on cardiac and fast twitch skeletal muscle sarcoplasmic reticulum calcium pumps. (38/50569)

In cardiac and skeletal muscle Ca2+ translocation from cytoplasm into sarcoplasmic reticulum (SR) is accomplished by different Ca2+-ATPases whose functioning involves the formation and decomposition of an acylphosphorylated phosphoenzyme intermediate (EP). In this study we found that acylphosphatase, an enzyme well represented in muscular tissues and which actively hydrolyzes EP, had different effects on heart (SERCA2a) and fast twitch skeletal muscle SR Ca2+-ATPase (SERCA1). With physiological acylphosphatase concentrations SERCA2a exhibited a parallel increase in the rates of both ATP hydrolysis and Ca2+ transport; in contrast, SERCA1 appeared to be uncoupled since the stimulation of ATP hydrolysis matched an inhibition of Ca2+ pump. These different effects probably depend on phospholamban, which is associated with SERCA2a but not SERCA1. Consistent with this view, the present study suggests that acylphosphatase-induced stimulation of SERCA2a, in addition to an enhanced EP hydrolysis, may be due to a displacement of phospholamban, thus to a removal of its inhibitory effect.  (+info)

Development and cytodifferentiation of the rabbit pars intermedia. II. Neonatal to adult. (39/50569)

Material from pars intermedia obtained from rabbits ranging from the second week post-partum to the adult stage, and including specimens from pregnant animals, was studied. The rate of cell division became greatly reduced early in postnatal) development. The commonest type of cell (the pars intermedia-glandular cell) becomes increasingly PAS-positive during the early stages of development. Although by 35 days differentiation of all the ACT-type cells is complete, the pars intermedia-glandular cells take as long as 53 days to mature. The epithelioid border of the hypophysial cleft persists throughout life, commonly containing dark cells. A ciliary fringe frequently appears in neonates and persists in pregnancy. Possible functions of such cilia are discussed. Throughout development the fine structure of the vasculature was studied. Secretory granules resembling those within the cells were seen in and around the blood vessels, and the mode of endocrine secretion in the pars intermedia tissue is discussed. The pars intermedia-glandular cells of the pregnant rabbits appeared hyperactive. The functional significance of the mammalian pars intermedia is discussed.  (+info)

Chlamydia pneumoniae and atherosclerosis. (40/50569)

OBJECTIVE: To review the literature for evidence that chronic infection with Chlamydia pneumoniae is associated with atherosclerosis and acute coronary syndromes. DATA SOURCES: MEDLINE and Institute of Science and Information bibliographic databases were searched at the end of September 1998. Indexing terms used were chlamydi*, heart, coronary, and atherosclerosis. Serological and pathological studies published as papers in any language since 1988 or abstracts since 1997 were selected. DATA EXTRACTION: It was assumed that chronic C pneumoniae infection is characterised by the presence of both specific IgG and IgA, and serological studies were examined for associations that fulfilled these criteria. Pathological studies were also reviewed for evidence that the presence of C pneumoniae in diseased vessels is associated with the severity and extent of atherosclerosis. DATA SYNTHESIS: The majority of serological studies have shown an association between C pneumoniae and atherosclerosis. However, the number of cases in studies that have reported a positive association when using strict criteria for chronic infection is similar to the number of cases in studies which found no association. Nevertheless, the organism is widely found in atherosclerotic vessels, although it may not be at all diseased sites and is not confined to the most severe lesions. Rabbit models and preliminary antibiotic trials suggest that the organism might exacerbate atherosclerosis. CONCLUSION: More evidence is required before C pneumoniae can be accepted as playing a role in atherosclerosis. Although use of antibiotics in routine practice is not justified, large scale trials in progress will help to elucidate the role of C pneumoniae.  (+info)